IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3285-d185382.html
   My bibliography  Save this article

Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors

Author

Listed:
  • Yedluri Anil Kumar

    (School of Electrical Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea)

  • Hee-Je Kim

    (School of Electrical Engineering, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea)

Abstract

CoO–ZnO-based composites have attracted considerable attention for the development of energy storage devices because of their multifunctional characterization and ease of integration with existing components. This paper reports the synthesis of CoO@ZnO (CZ) nanostructures on Ni foam by the chemical bath deposition (CBD) method for facile and eco-friendly supercapacitor applications. The formation of a CoO@ZnO electrode functioned with cobalt, zinc, nickel and oxygen groups was confirmed by X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), low and high-resolution scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The as-synthesized hierarchical nanocorn skeleton-like structure of a CoO@ZnO-3h (CZ3h) electrode delivered a higher specific capacitance (C s ) of 1136 F/g at 3 A/g with outstanding cycling performance, showing 98.3% capacitance retention over 3000 cycles in an aqueous 2 M KOH electrolyte solution. This retention was significantly better than that of other prepared electrodes, such as CoO, ZnO, CoO@ZnO-1h (CZ1h), and CoO@ZnO-7h (CZ7h) (274 F/g, 383 F/g, 240 F/g and 537 F/g). This outstanding performance was attributed to the excellent surface morphology of CZ3h, which is responsible for the rapid electron/ion transfer between the electrolyte and the electrode surface area. The enhanced features of the CZ3h electrode highlight potential applications in high performance supercapacitors, solar cells, photocatalysis, and electrocatalysis.

Suggested Citation

  • Yedluri Anil Kumar & Hee-Je Kim, 2018. "Effect of Time on a Hierarchical Corn Skeleton-Like Composite of CoO@ZnO as Capacitive Electrode Material for High Specific Performance Supercapacitors," Energies, MDPI, vol. 11(12), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3285-:d:185382
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Le & Zhao, Yan & Lian, Jiabiao & Xu, Yuanguo & Bao, Jian & Qiu, Jingxia & Xu, Li & Xu, Hui & Hua, Mingqing & Li, Huaming, 2017. "Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density," Energy, Elsevier, vol. 123(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangyang Kang & Wu Zhou & Kaijie Qiu & Chaojie Wang & Zhaolong Qin & Bingyang Zhang & Qiongqiong Yao, 2023. "Numerical Simulation of an Indirect Contact Mobilized Thermal Energy Storage Container with Different Tube Bundle Layout and Fin Structure," Sustainability, MDPI, vol. 15(6), pages 1-13, March.
    2. Anil Kumar Yedluri & Tarugu Anitha & Hee-Je Kim, 2019. "Fabrication of Hierarchical NiMoO 4 /NiMoO 4 Nanoflowers on Highly Conductive Flexible Nickel Foam Substrate as a Capacitive Electrode Material for Supercapacitors with Enhanced Electrochemical Perfor," Energies, MDPI, vol. 12(6), pages 1-11, March.
    3. Zhangyang Kang & Rufei Tan & Wu Zhou & Zhaolong Qin & Sen Liu, 2023. "Numerical Simulation and Optimization of a Phase-Change Energy Storage Box in a Modular Mobile Thermal Energy Supply System," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    4. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    5. Vladimir Parra-Elizondo & Ana Karina Cuentas-Gallegos & Beatriz Escobar-Morales & José Martín Baas-López & Jorge Alonso Uribe-Calderón & Daniella Esperanza Pacheco-Catalán, 2019. "Electrochemical Assessment of As-Deposited Co(OH) 2 by Electrochemical Synthesis: The Effect of Synthesis Temperature on Performance," Energies, MDPI, vol. 12(22), pages 1-17, November.
    6. Xin Zhang & Shi Liu & Yuqi Zhao & Haicun Yang & Jinchun Li, 2023. "Honeycomb-like Hierarchical Porous Carbon from Lignosulphonate by Enzymatic Hydrolysis and Alkali Activation for High-Performance Supercapacitors," Energies, MDPI, vol. 16(9), pages 1-17, April.
    7. Dmitry Agafonov & Aleksandr Bobyl & Aleksandr Kamzin & Alexey Nashchekin & Evgeniy Ershenko & Arseniy Ushakov & Igor Kasatkin & Vladimir Levitskii & Mikhail Trenikhin & Evgeniy Terukov, 2023. "Phase-Homogeneous LiFePO 4 Powders with Crystallites Protected by Ferric-Graphite-Graphene Composite," Energies, MDPI, vol. 16(3), pages 1-28, February.
    8. Cong Zhang & Qun Gao & Ke Peng & Yan Jiang, 2023. "An EV Charging Guidance Strategy Based on the Hierarchical Comprehensive Evaluation Method," Energies, MDPI, vol. 16(7), pages 1-16, March.
    9. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    10. Wei Chen & Na Sun & Zhicheng Ma & Wenfei Liu & Haiying Dong, 2023. "A Two-Layer Optimization Strategy for Battery Energy Storage Systems to Achieve Primary Frequency Regulation of Power Grid," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parveen, Shama & Kavyashree, & Sharma, Suneel Kumar & Pandey, S.N., 2021. "High performance solid state symmetric supercapacitor based on reindeer moss-like structured Al(OH)3/MnO2/FeOOH composite electrode for energy storage applications," Energy, Elsevier, vol. 224(C).
    2. Mei, Junfeng & Fu, Wenbin & Zhang, Zemin & Jiang, Xiao & Bu, Han & Jiang, Changjun & Xie, Erqing & Han, Weihua, 2017. "Vertically-aligned Co3O4 nanowires interconnected with Co(OH)2 nanosheets as supercapacitor electrode," Energy, Elsevier, vol. 139(C), pages 1153-1158.
    3. Wang, Y. & Qiao, X. & Zhang, C. & Zhou, Xiangyang, 2018. "Self-discharge of a hybrid supercapacitor with incorporated galvanic cell components," Energy, Elsevier, vol. 159(C), pages 1035-1045.
    4. Lee, Seung-Hwan & Kim, Jong-Myon, 2018. "Punched H2Ti12O25 anode and activated carbon cathode for high energy/high power hybrid supercapacitors," Energy, Elsevier, vol. 150(C), pages 816-821.
    5. Rath, Tanmoy & Pramanik, Nilkamal & Kumar, Sandeep, 2017. "High electrochemical performance flexible solid-state supercapacitor based on Co-doped reduced graphene oxide and silk fibroin composites," Energy, Elsevier, vol. 141(C), pages 1982-1988.
    6. Lamiel, Charmaine & Nguyen, Van Hoa & Hussain, Iftikhar & Shim, Jae-Jin, 2017. "Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte," Energy, Elsevier, vol. 140(P1), pages 901-911.
    7. Ensafi, Ali A. & Ahmadi, Najmeh & Rezaei, Behzad & Abdolmaleki, Amir & Mahmoudian, Manzar, 2018. "A new quaternary nanohybrid composite electrode for a high-performance supercapacitor," Energy, Elsevier, vol. 164(C), pages 707-721.
    8. Wang, Mingyue & Huang, Ying & Wang, Ke & Zhu, Yade & Zhang, Na & Zhang, Hongming & Li, Suping & Feng, Zhenhe, 2018. "PVD synthesis of binder-free silicon and carbon coated 3D α-Fe2O3 nanorods hybrid films as high-capacity and long-life anode for flexible lithium-ion batteries," Energy, Elsevier, vol. 164(C), pages 1021-1029.
    9. Kanakaraj Aruchamy & Athinarayanan Balasankar & Subramaniyan Ramasundaram & Tae Hwan Oh, 2023. "Recent Design and Synthesis Strategies for High-Performance Supercapacitors Utilizing ZnCo 2 O 4 -Based Electrode Materials," Energies, MDPI, vol. 16(15), pages 1-36, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3285-:d:185382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.