IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1717-d116583.html
   My bibliography  Save this article

A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems

Author

Listed:
  • Razali Jidin

    (College of Engineering, Universiti Tenaga Nasional (UNITEN), Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia)

  • Abdul Bahari Othman

    (Generation Research Department, Tenaga Nasional Berhad Research (TNBR), Kajang 43000, Selangor, Malaysia)

Abstract

The main feature of a run-off river hydroelectric system is a small size intake pond that overspills when river flow is more than turbines’ intake. As river flow fluctuates, a large proportion of the potential energy is wasted due to the spillages which can occur when turbines are operated manually. Manual operation is often adopted due to unreliability of water level-based controllers at many remote and unmanned run-off river hydropower plants. In order to overcome these issues, this paper proposes a novel method by developing a controller that derives turbine output set points from computed mass flow rate of rivers that feed the hydroelectric system. The computed flow is derived by summation of pond volume difference with numerical integration of both turbine discharge flows and spillages. This approach of estimating river flow allows the use of existing sensors rather than requiring the installation of new ones. All computations, including the numerical integration, have been realized as ladder logics on a programmable logic controller. The implemented controller manages the dynamic changes in the flow rate of the river better than the old point-level based controller, with the aid of a newly installed water level sensor. The computed mass flow rate of the river also allows the controller to straightforwardly determine the number of turbines to be in service with considerations of turbine efficiencies and auxiliary power conservation.

Suggested Citation

  • Razali Jidin & Abdul Bahari Othman, 2017. "A Computed River Flow-Based Turbine Controller on a Programmable Logic Controller for Run-Off River Hydroelectric Systems," Energies, MDPI, vol. 10(11), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1717-:d:116583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yazmín Yorely Rivera-Lugo & Kevin Isaac Pérez-Muñoz & Balter Trujillo-Navarrete & Carolina Silva-Carrillo & Edgar Alonso Reynoso-Soto & Julio Cesar Calva Yañez & Shui Wai Lin & José Roberto Flores-Her, 2020. "PtPd Hybrid Composite Catalysts as Cathodes for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 13(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Kull & Bernd Zeilmann & Gerhard Fischerauer, 2021. "Field-Ready Implementation of Linear Economic Model Predictive Control for Microgrid Dispatch in Small and Medium Enterprises," Energies, MDPI, vol. 14(13), pages 1-23, June.
    2. Dan-Adrian Mocanu & Viorel Bădescu & Ciprian Bucur & Iuliana Ștefan & Elena Carcadea & Maria Simona Răboacă & Ioana Manta, 2020. "PLC Automation and Control Strategy in a Stirling Solar Power System," Energies, MDPI, vol. 13(8), pages 1-19, April.
    3. Wensheng Li & Fanke Yang & Liqiang Zhong & Hao Wu & Xiangyuan Jiang & Chunbo Luo & Andrei V. Chukalin, 2023. "Attitude Control of UAVs with Search Optimization and Disturbance Rejection Strategies," Mathematics, MDPI, vol. 11(17), pages 1-16, September.
    4. Shaheer Ansari & Afida Ayob & Molla S. Hossain Lipu & Mohamad Hanif Md Saad & Aini Hussain, 2021. "A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects," Sustainability, MDPI, vol. 13(15), pages 1-34, July.
    5. Petroutsatou Kleopatra & Sifiniadis Anestis, 2016. "Exploring the consequences of human multitasking in industrial automation projects: a tool to mitigate impacts – Part II," Organization, Technology and Management in Construction, Sciendo, vol. 10(1), pages 1770-1777, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1717-:d:116583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.