IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v5y2020i3p75-d406037.html
   My bibliography  Save this article

High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex

Author

Listed:
  • Margaret Kalacska

    (Applied Remote Sensing Lab, Department of Geography, McGill University, Montreal, QC H3A 0B9, Canada)

  • Oliver Lucanus

    (Applied Remote Sensing Lab, Department of Geography, McGill University, Montreal, QC H3A 0B9, Canada)

  • Leandro Sousa

    (Laboratório de Ictiologia de Altamira, Universidade Federal do Pará, Altamira, PA 68372-040, Brazil)

  • J. Pablo Arroyo-Mora

    (Flight Research Lab, National Research Council, Ottawa, ON K1A-0R6, Canada)

Abstract

We describe a new high spatial resolution surface water classification dataset generated for the Xingu river, Brazil, from its confluence with the Iriri river to the Pimental dam prior to construction of the Belo Monte hydropower complex, and after its operationalization. This river is well-known for its exceptionally high diversity and endemism in ichthyofauna. Pre-existing datasets generated from moderate resolution satellite imagery (e.g., 30 m) do not adequately capture the extent of the river. Accurate measurements of water extent are important for a range of applications utilizing surface water data, including greenhouse gas emission estimation, land cover change mapping, and habitat loss/change estimates, among others. We generated the new classifications from RapidEye imagery (5 m pixel size) for 2011 and PlanteScope imagery (3 m pixel size) for 2019 using a Geographic Object Based Image Analysis (GEOBIA) approach.

Suggested Citation

  • Margaret Kalacska & Oliver Lucanus & Leandro Sousa & J. Pablo Arroyo-Mora, 2020. "High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex," Data, MDPI, vol. 5(3), pages 1-12, August.
  • Handle: RePEc:gam:jdataj:v:5:y:2020:i:3:p:75-:d:406037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/5/3/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/5/3/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edgardo M. Latrubesse & Eugenio Y. Arima & Thomas Dunne & Edward Park & Victor R. Baker & Fernando M. d’Horta & Charles Wight & Florian Wittmann & Jansen Zuanon & Paul A. Baker & Camila C. Ribas & Ric, 2017. "Damming the rivers of the Amazon basin," Nature, Nature, vol. 546(7658), pages 363-369, June.
    2. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    3. Juliana P. Silva & Diamantino I. Pereira & Alexandre M. Aguiar & Cleide Rodrigues, 2013. "Geodiversity assessment of the Xingu drainage basin," Journal of Maps, Taylor & Francis Journals, vol. 9(2), pages 254-262, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yao Li & Gang Zhao & George H. Allen & Huilin Gao, 2023. "Diminishing storage returns of reservoir construction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    4. Mária Barančoková & Daniela Hutárová & Maroš Nikolaj, 2023. "Quantitative Assessment of Geodiversity for Conservation Purposes in Slovenské rudohorie Mountains (Slovakia)," Land, MDPI, vol. 12(9), pages 1-28, August.
    5. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    6. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    7. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    9. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    11. Paulilo Brasil & Pedro Medeiros, 2020. "NeStRes – Model for Operation of Non-Strategic Reservoirs for Irrigation in Drylands: Model Description and Application to a Semiarid Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 195-210, January.
    12. Zhiwei Wan & Hongqi Wu, 2022. "Evolution of Ecological Patterns of Poyang Lake Wetland Landscape over the Last One Hundred Years Based on Historical Topographic Maps and Landsat Images," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    13. Donghui Xu & Gautam Bisht & Zeli Tan & Eva Sinha & Alan V. Vittorio & Tian Zhou & Valeriy Y. Ivanov & L. Ruby Leung, 2024. "Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Lan Feng & Pan Hu & Haisen Wang & Ming-ming Chen & Jiangang Han, 2022. "Improving City Water Quality through Pollution Reduction with Urban Floodgate Infrastructure and Design Solutions: A Case Study in Wuxi, China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    16. Alexey Victorov & Veronika Kapralova & Timofey Orlov & Olga Trapeznikova & Maria Arkhipova, 2022. "Research into Cryolithozone Spatial Pattern Changes Based on the Mathematical Morphology of Landscapes," Energies, MDPI, vol. 15(3), pages 1-19, February.
    17. Eleni S. Bekri & Ioannis P. Kokkoris & Charalambos S. Christodoulou & Antonia Sophocleous-Lemonari & Panayotis Dimopoulos, 2023. "Management Implications at a Protected, Peri-Urban, Salt Lake Ecosystem: The Case of Larnaca’s Salt Lakes (Cyprus)," Land, MDPI, vol. 12(9), pages 1-18, September.
    18. Athayde, Simone & Duarte, Carla G. & Gallardo, Amarilis L.C.F. & Moretto, Evandro M. & Sangoi, Luisa A. & Dibo, Ana Paula A. & Siqueira-Gay, Juliana & Sánchez, Luis E., 2019. "Improving policies and instruments to address cumulative impacts of small hydropower in the Amazon," Energy Policy, Elsevier, vol. 132(C), pages 265-271.
    19. Quezada Lambertin, Carlos Eduardo & Nina Vargas, Marco Leandro & Flores Quizbert, Ruben, 2023. "Estimación del indicador 6.6.1: Proporción de cuencas hidrográficas de municipios y territorios indígenas de Bolivia que experimentan grandes cambios en la extensión de sus aguas superficiales," Documentos de trabajo 2/2023, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    20. Yi Xi & Shushi Peng & Gang Liu & Agnès Ducharne & Philippe Ciais & Catherine Prigent & Xinyu Li & Xutao Tang, 2022. "Trade-off between tree planting and wetland conservation in China," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:5:y:2020:i:3:p:75-:d:406037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.