IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i9p933-d1642062.html
   My bibliography  Save this article

A Daily Reference Crop Evapotranspiration Forecasting Model Based on Improved Informer

Author

Listed:
  • Junrui Pan

    (College of Electronic Engineering & College of Artificial Intelligence, South China Agricultural University, Guangzhou 510642, China)

  • Long Yu

    (College of Electronic Engineering & College of Artificial Intelligence, South China Agricultural University, Guangzhou 510642, China)

  • Bo Zhou

    (Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Labora-tory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China)

  • Junhong Zhao

    (Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China)

Abstract

Daily reference crop evapotranspiration (ET 0 ) is crucial for precision irrigation management, yet traditional prediction methods struggle to capture its dynamic variations due to the complexity and nonlinearity of meteorological conditions. To address this, we propose an Improved Informer model to enhance ET 0 prediction accuracy, providing a scientific basis for agricultural water management. Using meteorological and soil data from the Yingde region, we employed the Maximal Information Coefficient (MIC) to identify key influencing factors and integrated Residual Cycle Forecasting (RCF), Star Aggregate Redistribute (STAR), and Fully Adaptive Normalization (FAN) techniques into the Informer model. MIC analysis identified total shortwave radiation, sunshine duration, maximum temperature at 2 m, soil temperature at 28–100 cm depth, and surface pressure as optimal features. Under the five-feature scenario (S3), the improved model achieved superior performance compared to Long Short-Term Memory (LSTM) and the original Informer models, with MAE reduced to 0.065 (LSTM: 0.637, Informer: 0.171) and MSE to 0.007 (LSTM: 0.678, Informer: 0.060). The inference time was also reduced by 31%, highlighting the enhanced computational efficiency. The Improved Informer model effectively captures the periodic and nonlinear characteristics of ET 0 , offering a novel solution for precision irrigation management with significant practical implications.

Suggested Citation

  • Junrui Pan & Long Yu & Bo Zhou & Junhong Zhao, 2025. "A Daily Reference Crop Evapotranspiration Forecasting Model Based on Improved Informer," Agriculture, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:9:p:933-:d:1642062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/9/933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/9/933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Umutoni, Lisa & Samadi, Vidya, 2024. "Application of machine learning approaches in supporting irrigation decision making: A review," Agricultural Water Management, Elsevier, vol. 294(C).
    2. Konstantinos Dolaptsis & Xanthoula Eirini Pantazi & Charalampos Paraskevas & Selçuk Arslan & Yücel Tekin & Bere Benjamin Bantchina & Yahya Ulusoy & Kemal Sulhi Gündoğdu & Muhammad Qaswar & Danyal Bust, 2024. "A Hybrid LSTM Approach for Irrigation Scheduling in Maize Crop," Agriculture, MDPI, vol. 14(2), pages 1-25, January.
    3. Gustavo Felipe Martin Nascimento & Frédéric Wurtz & Patrick Kuo-Peng & Benoit Delinchant & Nelson Jhoe Batistela, 2021. "Outlier Detection in Buildings’ Power Consumption Data Using Forecast Error," Energies, MDPI, vol. 14(24), pages 1-15, December.
    4. Mohamed K. Abdel-Fattah & Sameh Kotb Abd-Elmabod & Zhenhua Zhang & Abdel-Rhman M. A. Merwad, 2023. "Exploring the Applicability of Regression Models and Artificial Neural Networks for Calculating Reference Evapotranspiration in Arid Regions," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Gross & Marco Sonnberger, 2022. "Making the Most of Failure and Uncertainty: Welcome Surprises and Contingency in Energy Transition Research," Energies, MDPI, vol. 15(18), pages 1-3, September.
    2. Gustavo Felipe Martin Nascimento & Frédéric Wurtz & Patrick Kuo-Peng & Benoit Delinchant & Nelson Jhoe Batistela, 2022. "Quantifying Compressed Air Leakage through Non-Intrusive Load Monitoring Techniques in the Context of Energy Audits," Energies, MDPI, vol. 15(9), pages 1-24, April.
    3. Haicheng Ling & Pierre-Yves Massé & Thibault Rihet & Frédéric Wurtz, 2023. "Realistic Nudging through ICT Pipelines to Help Improve Energy Self-Consumption for Management in Energy Communities," Energies, MDPI, vol. 16(13), pages 1-24, July.
    4. Changzhi Li & Dandan Liu & Mao Wang & Hanlin Wang & Shuai Xu, 2023. "Detection of Outliers in Time Series Power Data Based on Prediction Errors," Energies, MDPI, vol. 16(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:9:p:933-:d:1642062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.