IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1229-d1672127.html
   My bibliography  Save this article

The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis

Author

Listed:
  • María Concepción Ramos

    (Department of Chemistry, Physics and Environmental and Soil Sciences, UdL-Agrotecnio CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain)

Abstract

Climate variability and trends are of increasing concern in grape-growing areas, although each cultivar can respond differently. In order to establish appropriate adaptation measures, it is necessary to know the relationship between climate variables and grape composition for each cultivar. This research attempts to provide information in this regard for the Albillo Mayor variety grown in the Ribera del Duero DO (Spain) and its potential changes under the shared socioeconomic pathways (SSPs) that lead to different radiative forcing targets. The response of this variety was evaluated in two plots during five seasons (2020–2024). For each year, the phenological dates and grape composition (berry weight, pH, titratable acidity, malic acid, alcoholic content, and the total polyphenol index) were evaluated and related to climate variables including maximum and minimum temperature and precipitation and the resulting water availability averaged over different periods within the growing season. Maximum and minimum temperatures in the pre-veraison period led to lower titratable acidity and malic acid, which, in addition, were favored by lower water availability in the same period. These conditions, on the contrary, led to an increase in the probable alcoholic degree, which is associated with a decrease in berry size. In addition, more available water during the ripening period increases the berry weight, which was also negatively affected by the difference between the maximum and minimum temperature in the same period. By 2050, with the predicted decrease in precipitation and increase in temperature, Albillo Mayor may undergo a decrease in acidity >14% and an increase in the probable alcoholic degree of about 5% in the SSP2-4.5 scenario (energy-balanced development, leading to a radiative forcing of 4.5 Wm −2 ), while changes could be up to 1.5 and 1.1 times greater, respectively, in the SSP5-8.5 scenario (heavily reliant in fossil-fueled development, leading to a radiative forcing of 8.5 Wm −2 ).

Suggested Citation

  • María Concepción Ramos, 2025. "The Influence of Weather Conditions and Available Soil Water on Vitis vinifera L. Albillo Mayor in Ribera del Duero DO (Spain) and Potential Changes Under Climate Change: A Preliminary Analysis," Agriculture, MDPI, vol. 15(11), pages 1-15, June.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1229-:d:1672127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Vršič & T. Vodovnik, 2012. "Reactions of grape varieties to climate changes in North East Slovenia," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(1), pages 34-41.
    2. Ramírez-Cuesta, J.M. & Intrigliolo, D.S. & Lorite, I.J. & Moreno, M.A. & Vanella, D. & Ballesteros, R. & Hernández-López, D. & Buesa, I., 2023. "Determining grapevine water use under different sustainable agronomic practices using METRIC-UAV surface energy balance model," Agricultural Water Management, Elsevier, vol. 281(C).
    3. Eleonora Cataldo & Maddalena Fucile & Giovan Battista Mattii, 2022. "Effects of Kaolin and Shading Net on the Ecophysiology and Berry Composition of Sauvignon Blanc Grapevines," Agriculture, MDPI, vol. 12(4), pages 1-21, March.
    4. Yang, Chenyao & Menz, Christoph & Fraga, Helder & Costafreda-Aumedes, Sergi & Leolini, Luisa & Ramos, Maria Concepción & Molitor, Daniel & van Leeuwen, Cornelis & Santos, João A., 2022. "Assessing the grapevine crop water stress indicator over the flowering-veraison phase and the potential yield lose rate in important European wine regions," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Kizildeniz, T. & Mekni, I. & Santesteban, H. & Pascual, I. & Morales, F. & Irigoyen, J.J., 2015. "Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars," Agricultural Water Management, Elsevier, vol. 159(C), pages 155-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
    2. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    3. Kizildeniz, T. & Pascual, I. & Irigoyen, J.J & Morales, F., 2018. "Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Temprani," Agricultural Water Management, Elsevier, vol. 202(C), pages 299-310.
    4. Jiří Téthal & Mojmír Baroň & Radek Sotolář & Stefan Ailer & Jiří Sochor, 2015. "Effect of grapevine rootstocks on qualitative parameters of the Cerason variety," Czech Journal of Food Sciences, Czech Academy of Agricultural Sciences, vol. 33(6), pages 570-579.
    5. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    6. Han, Weihua & Sun, Jiaxing & Zhang, Kui & Mao, Lili & Gao, Lili & Hou, Xuemin & Cui, Ningbo & Kang, Wenhuai & Gong, Daozhi, 2023. "Optimizing drip fertigation management based on yield, quality, water and fertilizer use efficiency of wine grape in North China," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Martínez-Lüscher, Johann & Kozikova, Daria & Goicoechea, Nieves & Pascual, Inmaculada, 2024. "Elevated CO2 alleviates the exacerbation of evapotranspiration rates of grapevine (Vitis vinifera) under elevated temperature," Agricultural Water Management, Elsevier, vol. 302(C).
    8. Moritz Wagner & Peter Stanbury & Tabea Dietrich & Johanna Döring & Joachim Ewert & Carlotta Foerster & Maximilian Freund & Matthias Friedel & Claudia Kammann & Mirjam Koch & Tom Owtram & Hans Reiner S, 2023. "Developing a Sustainability Vision for the Global Wine Industry," Sustainability, MDPI, vol. 15(13), pages 1-29, July.
    9. Iván Francisco García-Tejero & Víctor Hugo Durán-Zuazo, 2022. "Future of Irrigation in Agriculture in Southern Europe," Agriculture, MDPI, vol. 12(6), pages 1-5, June.
    10. Du, Bin & Shukla, M.K. & Yang, Xiaolin & Du, Taisheng, 2023. "Enhanced fruit yield and quality of tomato by photosynthetic bacteria and CO2 enrichment under reduced irrigation," Agricultural Water Management, Elsevier, vol. 277(C).
    11. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    12. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Abelardo García-Martín & Luis L. Paniagua & Francisco J. Rebollo, 2022. "Future Scenarios for Viticultural Suitability under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Agriculture, MDPI, vol. 12(11), pages 1-17, November.
    13. Buesa, I. & Torres, N. & Tortosa, I. & Marín, D. & Villa-Llop, A. & Douthe, C. & Santesteban, L.G. & Medrano, H. & Escalona, J.M., 2023. "Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo," Agricultural Water Management, Elsevier, vol. 289(C).
    14. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    15. Yishai Netzer & Yedidya Suued & Matanya Harel & Danielle Ferman-Mintz & Elyashiv Drori & Sarel Munitz & Maria Stanevsky & José M. Grünzweig & Aaron Fait & Noa Ohana-Levi & Gil Nir & Gil Harari, 2022. "Forever Young? Late Shoot Pruning Affects Phenological Development, Physiology, Yield and Wine Quality of Vitis vinifera cv. Malbec," Agriculture, MDPI, vol. 12(5), pages 1-22, April.
    16. Strack, Timo & Stoll, Manfred, 2022. "Soil water dynamics and drought stress response of Vitis vinifera L. in steep slope vineyard systems," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Marko Simeunović & Kruna Ratković & Nataša Kovač & Tamara Racković & António Fernandes, 2025. "A Knowledge-Driven Framework for a Decision Support Platform in Sustainable Viticulture: Integrating Climate Data and Supporting Stakeholder Collaboration," Sustainability, MDPI, vol. 17(4), pages 1-23, February.
    18. Wei, Jiaxing & Dong, Weichen & Liu, Shaomin & Song, Lisheng & Zhou, Ji & Xu, Ziwei & Wang, Ziwei & Xu, Tongren & He, Xinlei & Sun, Jingwei, 2023. "Mapping super high resolution evapotranspiration in oasis-desert areas using UAV multi-sensor data," Agricultural Water Management, Elsevier, vol. 287(C).
    19. Cai, Zelin & Bai, Jiaming & Li, Rui & He, Daiwei & Du, Rongcheng & Li, Dayong & Hong, Tingting & Zhang, Zhi, 2023. "Water and nitrogen management scheme of melon based on yield−quality−efficiency matching perspective under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 285(C).
    20. Ohana-Levi, Noa & Mintz, Danielle Ferman & Hagag, Nave & Stern, Yossi & Munitz, Sarel & Friedman-Levi, Yael & Shacham, Nir & Grünzweig, José M. & Netzer, Yishai, 2022. "Grapevine responses to site-specific spatiotemporal factors in a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 259(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1229-:d:1672127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.