IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i9p1520-d1470972.html
   My bibliography  Save this article

Performance Study of a Chain–Spoon Seed Potato Discharger Based on DEM-MBD Coupling

Author

Listed:
  • Wei Xing

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

  • Hua Zhang

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

  • Wei Sun

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

  • Hui Li

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

  • Xiaolong Liu

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

  • Hongling Li

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

  • Yangzhou Chen

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

  • Yonggang Lu

    (College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China)

Abstract

To address the issues of the poor filling and clearing efficiency of spoon–chain potato seed dischargers, an optimization design was implemented in this study. Based on the motion characteristics of potatoes during the filling and transport processes, an inclination angle was set for the seed spoon cavity, and a seed-clearing brush was installed at the top of the seed discharger. A DEM-MBD coupled simulation model of the seed discharger was constructed. The working speed of the driving sprocket, the inclination angle of the seed spoon cavity, and the seed holding height were used as experimental factors, while the single-seed qualification rate, missed seed rate, and over-seeding rate were used as evaluation indices to conduct a quadratic regression orthogonal rotation combination experiment. This determined the optimal technical parameter combination for the best working performance. Based on the results of the DEM-MBD coupled simulation experiments, a response surface optimization test was conducted. The results showed that the optimal working performance was achieved when the working speed of the driving sprocket was 43 rpm, the inclination angle of the seed spoon cavity was 15°, and the seed holding height was 0.2 m. Under these conditions, the single-seed qualification rate was 95.28%, the missed seed rate was 0.92%, and the over-seeding rate was 3.80%. Further soil bin tests confirmed that, under the optimal working parameters, the relative deviations of all test indices from the response surface optimization test results were less than 2%. The research results provide new insights for the optimization design of spoon–chain potato seed-metering devices.

Suggested Citation

  • Wei Xing & Hua Zhang & Wei Sun & Hui Li & Xiaolong Liu & Hongling Li & Yangzhou Chen & Yonggang Lu, 2024. "Performance Study of a Chain–Spoon Seed Potato Discharger Based on DEM-MBD Coupling," Agriculture, MDPI, vol. 14(9), pages 1-23, September.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1520-:d:1470972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/9/1520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/9/1520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiqi Zheng & Hongbo Zhao & Zhengdao Liu & Jin He & Wenzheng Liu, 2021. "Research Progress and Development of Mechanized Potato Planters: A Review," Agriculture, MDPI, vol. 11(6), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Chen & Xiang Yin & Wenpeng Ma & Chengqian Jin & Yangyang Liao, 2024. "Contact Parameter Calibration for Discrete Element Potato Minituber Seed Simulation," Agriculture, MDPI, vol. 14(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Xiaoxin Zhu & Pinyan Lyu & Qiang Gao & Haiqin Ma & Yuxuan Chen & Yu Qi & Jicheng Li & Jinqing Lyu, 2025. "Design and Comparative Experimental Study of Air-Suction Mulai-Arm Potato Planter," Agriculture, MDPI, vol. 15(16), pages 1-25, August.
    3. Kibiya Abubakar Yusuf & Edwin O. Amisi & Qishuo Ding & Xinxin Chen & Gaoming Xu & Abdulaziz Nuhu Jibril & Moussita G. Gedeon & Zakariya M. Abdulhamid, 2024. "Novel Technical Parameters-Based Classification of Harvesters Using Principal Component Analysis and Q-Type Cluster Model," Agriculture, MDPI, vol. 14(6), pages 1-16, June.
    4. Hongling Li & Xiaolong Liu & Hua Zhang & Hui Li & Shangyun Jia & Wei Sun & Guanping Wang & Quan Feng & Sen Yang & Wei Xing, 2024. "Research and Experiment on Miss-Seeding Detection of Potato Planter Based on Improved YOLOv5s," Agriculture, MDPI, vol. 14(11), pages 1-18, October.
    5. Jinzhu Lu & Senping Liu & Qi Wang & Min Liao, 2024. "Research on Device and Sensing Technology for Precision Seeding of Potato," Agriculture, MDPI, vol. 14(12), pages 1-45, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:9:p:1520-:d:1470972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.