IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p608-d1085108.html
   My bibliography  Save this article

Germination and Seedling Development Responses of Sunflower ( Helianthus annuus L.) Seeds to Temperature and Different Levels of Water Availability

Author

Listed:
  • Asma Haj Sghaier

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Hussein Khaeim

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
    Field Crops Department, College of Agriculture, University of Al-Qadisiyah, Al Diwaniyah 58002, Iraq)

  • Ákos Tarnawa

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Gergő Péter Kovács

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Csaba Gyuricza

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

  • Zoltán Kende

    (Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary)

Abstract

Abiotic variables are crucial for seed germination and seedling development. In the present work, we attempted to determine the optimal conditions (temperature, water, seed density, and fungal growth) for sunflower seed development ( Helianthus annus L. Larissza). The germination of sunflower seeds was investigated under controlled conditions at eight consistent temperatures: 5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, 35 °C, and 40 °C. For the water test, there were 12 water levels based on one-milliliter intervals and 18 water levels based on thousand kernel weight (TKW). In addition, four seed densities (6, 8, 10, and 12) and two antifungal application techniques (sterilization and growing medium) were examined. The results showed that temperature has a significant effect on seed germination, germination timing, and seedling development. Temperatures between 15 and 35 degrees Celsius were optimal for germination, with 25 degrees Celsius being the optimal temperature for significant germination and seedling development. Beginning at 0.6 mL, or 125% of the TKW, sunflower seeds can germinate under a wide range of water availability. The optimal range for seedling development (8.2–11.4) is wider than the optimal range for dry matter accumulation, which is 5.8–8.2 mL or 1000–1625% of the TKW. The finding that a density of 10 to 12 seeds per 9 cm Petri dish demonstrates the most exceptional values is advantageous for future research and breeding projects, particularly when seeds are scarce. Seed priming is a more effective antifungal application technique than other techniques.

Suggested Citation

  • Asma Haj Sghaier & Hussein Khaeim & Ákos Tarnawa & Gergő Péter Kovács & Csaba Gyuricza & Zoltán Kende, 2023. "Germination and Seedling Development Responses of Sunflower ( Helianthus annuus L.) Seeds to Temperature and Different Levels of Water Availability," Agriculture, MDPI, vol. 13(3), pages 1-16, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:608-:d:1085108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drebee, Hayder Abbas & Abdul Razak, Nor Azam, 2018. "Measuring the Efficiency of Colleges at the University of Al-Qadisiyah-Iraq: A Data Envelopment Analysis Approach," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 52(3), pages 153-166.
    2. Hussein Khaeim & Zoltán Kende & István Balla & Csaba Gyuricza & Adnan Eser & Ákos Tarnawa, 2022. "The Effect of Temperature and Water Stresses on Seed Germination and Seedling Growth of Wheat ( Triticum aestivum L.)," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    3. Hussain, Mubshar & Farooq, Shahid & Hasan, Waseem & Ul-Allah, Sami & Tanveer, Mohsin & Farooq, Muhammad & Nawaz, Ahmad, 2018. "Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives," Agricultural Water Management, Elsevier, vol. 201(C), pages 152-166.
    4. Viola Kunos & Mónika Cséplő & Diána Seress & Adnan Eser & Zoltán Kende & Andrea Uhrin & Judit Bányai & József Bakonyi & Magda Pál & Klára Mészáros, 2022. "The Stimulation of Superoxide Dismutase Enzyme Activity and Its Relation with the Pyrenophora teres f. teres Infection in Different Barley Genotypes," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balázs Varga, 2023. "Plant Breeding Supporting the Sustainable Field Crop Production," Sustainability, MDPI, vol. 15(5), pages 1-5, February.
    2. Ibrahim Bolat & Asuman Gundogdu Bakır & Kubra Korkmaz & Gastón Gutiérrez-Gamboa & Ozkan Kaya, 2022. "Silicon and Nitric Oxide Applications Allow Mitigation of Water Stress in Myrobalan 29C Rootstocks ( Prunus cerasifera Ehrh.)," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    3. Noriza Khalid & Ákos Tarnawa & István Balla & Suhana Omar & Rosnani Abd Ghani & Márton Jolánkai & Zoltán Kende, 2023. "Combination Effect of Temperature and Salinity Stress on Germination of Different Maize ( Zea mays L.) Varieties," Agriculture, MDPI, vol. 13(10), pages 1-18, October.
    4. Ahmad Sher & Muhammad Yasir Arfat & Sami Ul-Allah & Abdul Sattar & Muhammad Ijaz & Abdul Manaf & Abdul Qayyum & Ali Tan Kee Zuan & Omaima Nasif & Kristina Gasparovic, 2021. "Conservation tillage improves productivity of sunflower (Helianthus annuus L.) under reduced irrigation on sandy loam soil," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-9, December.
    5. Muhammad Adeel Ghafar & Nudrat Aisha Akram & Muhammad Hamzah Saleem & Jianyong Wang & Leonard Wijaya & Mohammed Nasser Alyemeni, 2021. "Ecotypic Morphological and Physio-Biochemical Responses of Two Differentially Adapted Forage Grasses, Cenchrus ciliaris L. and Cyperus arenarius Retz. to Drought Stress," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    6. Miloš Krstić & Velimir Mladenov & Borislav Banjac & Brankica Babec & Dušan Dunđerski & Nemanja Ćuk & Sonja Gvozdenac & Sandra Cvejić & Siniša Jocić & Vladimir Miklič & Jelena Ovuka, 2023. "Can Modification of Sowing Date and Genotype Selection Reduce the Impact of Climate Change on Sunflower Seed Production?," Agriculture, MDPI, vol. 13(11), pages 1-19, November.
    7. Cai, Fu & Zhang, Yushu & Mi, Na & Ming, Huiqing & Zhang, Shujie & Zhang, Hui & Zhao, Xianli, 2020. "Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Salwinder Singh Dhaliwal & Vivek Sharma & Arvind Kumar Shukla & Rajeev Kumar Gupta & Vibha Verma & Manmeet Kaur & Sanjib Kumar Behera & Prabhjot Singh, 2023. "Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
    9. Rizwan Yaseen & Omar Aziz & Muhammad Hamzah Saleem & Muhammad Riaz & Muhammad Zafar-ul-Hye & Muzammal Rehman & Shafaqat Ali & Muhammad Rizwan & Mohammed Nasser Alyemeni & Hamed A. El-Serehy & Fahad A., 2020. "Ameliorating the Drought Stress for Wheat Growth through Application of ACC-Deaminase Containing Rhizobacteria along with Biogas Slurry," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    10. da Silva Leite, Romeu & do Nascimento, Marilza Neves & Tanan, Tamara Torres & Gonçalves Neto, Lourival Palmeira & da Silva Ramos, Cristiane Amaral & da Silva, Alismário Leite, 2019. "Alleviation of water deficit in Physalis angulata plants by nitric oxide exogenous donor," Agricultural Water Management, Elsevier, vol. 216(C), pages 98-104.
    11. Vittoria Giannini & Carmelo Maucieri & Teofilo Vamerali & Giuseppe Zanin & Stefano Schiavon & Davide Matteo Pettenella & Stefano Bona & Maurizio Borin, 2022. "Sunflower: From Cortuso’s Description (1585) to Current Agronomy, Uses and Perspectives," Agriculture, MDPI, vol. 12(12), pages 1-16, November.
    12. Bai, Mengjie & Tao, Qibo & Zhang, Zuxin & Lang, Shuqing & Li, Junhui & Chen, Dali & Wang, Yanrong & Hu, Xiaowen, 2023. "Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    13. Hussein Khaeim & Zoltán Kende & István Balla & Csaba Gyuricza & Adnan Eser & Ákos Tarnawa, 2022. "The Effect of Temperature and Water Stresses on Seed Germination and Seedling Growth of Wheat ( Triticum aestivum L.)," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    14. Wang, Feng & Xiao, Junfu & Ming, Bo & Xie, Ruizhi & Wang, Keru & Hou, Peng & Liu, Guangzhou & Zhang, Guoqiang & Chen, Jianglu & Liu, Wanmao & Yang, Yunshan & Qin, Anzhen & Li, Shaokun, 2021. "Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates," Agricultural Water Management, Elsevier, vol. 247(C).
    15. Li, Yibo & Song, He & Zhou, Li & Xu, Zhenzhu & Zhou, Guangsheng, 2019. "Tracking chlorophyll fluorescence as an indicator of drought and rewatering across the entire leaf lifespan in a maize field," Agricultural Water Management, Elsevier, vol. 211(C), pages 190-201.
    16. Erhan Göçmen & Sila Barut Gök & Yasemin Erdoğdu, 2023. "The effect of irrigation treatments at different development stages on the bioactive components of sunflower cake," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(4), pages 179-187.
    17. García-López, J. & García-Ruiz, R. & Domínguez, J. & Lorite, I.J., 2019. "Improving the sustainability of farming systems under semi-arid conditions by enhancing crop management," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Zanib Nazar & Nudrat Aisha Akram & Muhammad Hamzah Saleem & Muhammad Ashraf & Shakeel Ahmed & Shafaqat Ali & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni, 2020. "Glycinebetaine-Induced Alteration in Gaseous Exchange Capacity and Osmoprotective Phenomena in Safflower ( Carthamus tinctorius L.) under Water Deficit Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    19. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    20. Stefania Nin & Lorenzo Bini & Maurizio Antonetti & Davide Manzi & Daniele Bonetti, 2023. "Growing ‘Genovese’ and ‘Valentino’ Basil in Pots Using Peat Substrate Combined with Phytoremediated Sediment: Effects on Yield and Nutraceutical Content," Sustainability, MDPI, vol. 15(9), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:608-:d:1085108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.