IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i7p933-d849510.html
   My bibliography  Save this article

Novel Hybrid Statistical Learning Framework Coupled with Random Forest and Grasshopper Optimization Algorithm to Forecast Pesticide Use on Golf Courses

Author

Listed:
  • Guillaume Grégoire

    (Centre de Recherche et d’Innovation sur les Végétaux, Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada)

  • Josée Fortin

    (Department of Soils and Agri-Food Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

  • Isa Ebtehaj

    (Department of Soils and Agri-Food Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

  • Hossein Bonakdari

    (Department of Soils and Agri-Food Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

Abstract

Golf course maintenance requires the use of several inputs, such as pesticides and fertilizers, that can be harmful to human health or the environment. Understanding the factors associated with pesticide use on golf courses may help golf-course managers reduce their reliance on these products. In this study, we used a database of about 14,000 pesticide applications in the province of Québec, Canada, to develop a novel hybrid machine learning approach to predict pesticide use on golf courses. We created this proposed model, called RF-SVM-GOA, by coupling a support vector machine (SVM) with random forest (RF) and the grasshopper optimization algorithm (GOA). We applied RF to handle the wide range of datasets and GOA to find the optimal SVM settings. We considered five different dependent variables—region, golf course ID, number of holes, year, and treated area—as input variables. The experimental results confirmed that the developed hybrid RF-SVM-GOA approach was able to estimate the active ingredient total (AIT) with a high level of accuracy (R = 0.99; MAE = 0.84; RMSE = 0.84; NRMSE = 0.04). We compared the results produced by the developed RF-SVM-GOA model with those of four tree-based techniques including M5P, random tree, reduced error pruning tree (REP tree), and RF, as well as with those of two non-tree-based techniques including the generalized structure of group method of data handling (GSGMDH) and evolutionary polynomial regression (EPR). The computational results showed that the accuracy of the proposed RF-SVM-GOA approach was higher, outperforming the other methods. We analyzed sensitivity to find the most effective variables in AIT forecasting. The results indicated that the treated area is the most effective variable in AIT forecasting. The results of the current study provide a method for increasing the sustainability of golf course management.

Suggested Citation

  • Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2022. "Novel Hybrid Statistical Learning Framework Coupled with Random Forest and Grasshopper Optimization Algorithm to Forecast Pesticide Use on Golf Courses," Agriculture, MDPI, vol. 12(7), pages 1-19, June.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:933-:d:849510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/7/933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/7/933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myongkyoon Yang & Seong-In Cho, 2021. "High-Resolution 3D Crop Reconstruction and Automatic Analysis of Phenotyping Index Using Machine Learning," Agriculture, MDPI, vol. 11(10), pages 1-22, October.
    2. Liu, Yang & Ruppert, David, 2021. "Density estimation on a network," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Hassan Sharafi & Isa Ebtehaj & Hossein Bonakdari & Amir Hossein Zaji, 2016. "Design of a support vector machine with different kernel functions to predict scour depth around bridge piers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2145-2162, December.
    4. Kamil Roman & Jan Barwicki & Witold Rzodkiewicz & Mariusz Dawidowski, 2021. "Evaluation of Mechanical and Energetic Properties of the Forest Residues Shredded Chips during Briquetting Process," Energies, MDPI, vol. 14(11), pages 1-11, June.
    5. Linsheng Huang & Kang Wu & Wenjiang Huang & Yingying Dong & Huiqin Ma & Yong Liu & Linyi Liu, 2021. "Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM," Agriculture, MDPI, vol. 11(10), pages 1-13, October.
    6. Wanying Diao & Gang Liu & Huimin Zhang & Kelin Hu & Xiuliang Jin, 2021. "Influences of Soil Bulk Density and Texture on Estimation of Surface Soil Moisture Using Spectral Feature Parameters and an Artificial Neural Network Algorithm," Agriculture, MDPI, vol. 11(8), pages 1-20, July.
    7. Odile Carisse & Mamadou Lamine Fall, 2021. "Decision Trees to Forecast Risks of Strawberry Powdery Mildew Caused by Podosphaera aphanis," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2023. "Forecasting Pesticide Use on Golf Courses by Integration of Deep Learning and Decision Tree Techniques," Agriculture, MDPI, vol. 13(6), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan-Kai Tu & Chin-En Kuo & Shih-Lun Fang & Han-Wei Chen & Ming-Kun Chi & Min-Hwi Yao & Bo-Jein Kuo, 2022. "A 1D-SP-Net to Determine Early Drought Stress Status of Tomato ( Solanum lycopersicum ) with Imbalanced Vis/NIR Spectroscopy Data," Agriculture, MDPI, vol. 12(2), pages 1-17, February.
    2. Mateusz Leszczyński & Kamil Roman, 2023. "Hot-Water Extraction (HWE) Method as Applied to Lignocellulosic Materials from Hemp Stalk," Energies, MDPI, vol. 16(12), pages 1-14, June.
    3. Antão Rodrigo Valentim & Jhon Ramírez Behainne & Aldo Braghini Junior, 2022. "Thermal Performance Analysis of Materials and Configurations for Cylindrical Sidewalls of Charcoal Kilns," Energies, MDPI, vol. 15(16), pages 1-21, August.
    4. Yamazoe, Hiroya & Naito, Kanta, 2024. "Simultaneous confidence region of an embedded one-dimensional curve in multi-dimensional space," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Ivan Brandić & Alan Antonović & Lato Pezo & Božidar Matin & Tajana Krička & Vanja Jurišić & Karlo Špelić & Mislav Kontek & Juraj Kukuruzović & Mateja Grubor & Ana Matin, 2023. "Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models," Energies, MDPI, vol. 16(2), pages 1-10, January.
    6. Kamil Roman & Witold Rzodkiewicz & Marek Hryniewicz, 2023. "Analysis of Forest Biomass Wood Briquette Structure According to Different Tests of Density," Energies, MDPI, vol. 16(6), pages 1-14, March.
    7. Hasan Demir & Hande Demir & Biljana Lončar & Lato Pezo & Ivan Brandić & Neven Voća & Fatma Yilmaz, 2023. "Optimization of Caper Drying Using Response Surface Methodology and Artificial Neural Networks for Energy Efficiency Characteristics," Energies, MDPI, vol. 16(4), pages 1-14, February.
    8. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    9. Chunfeng Gao & Xingjie Ji & Qiang He & Zheng Gong & Heguang Sun & Tiantian Wen & Wei Guo, 2023. "Monitoring of Wheat Fusarium Head Blight on Spectral and Textural Analysis of UAV Multispectral Imagery," Agriculture, MDPI, vol. 13(2), pages 1-16, January.
    10. Cuiling Li & Xiu Wang & Liping Chen & Xueguan Zhao & Yang Li & Mingzhou Chen & Haowei Liu & Changyuan Zhai, 2023. "Grading and Detection Method of Asparagus Stem Blight Based on Hyperspectral Imaging of Asparagus Crowns," Agriculture, MDPI, vol. 13(9), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:7:p:933-:d:849510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.