IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p254-d746197.html
   My bibliography  Save this article

Simultaneous Detection of Plant- and Fungus-Derived Genes Constitutively Expressed in Single Pseudoidium neolycopersici -Inoculated Type I Trichome Cells of Tomato Leaves via Multiplex RT-PCR and Nested PCR

Author

Listed:
  • Shota Iwasaki

    (Department of Agricultural Science, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan)

  • Naoko Okada

    (Department of Agricultural Science, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan)

  • Yutaka Kimura

    (Department of Agricultural Science, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan)

  • Yoshihiro Takikawa

    (Plant Center, Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan)

  • Tomoko Suzuki

    (Department of Chemical Biological Sciences, Faculty of Science, Japan Women’s University, Tokyo 112-8681, Japan
    Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan)

  • Koji Kakutani

    (Pharmaceutical Research and Technology Institute and Anti-Aging Centers, Kindai University, Osaka 577-8502, Japan)

  • Yoshinori Matsuda

    (Department of Agricultural Science, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan)

  • Yuling Bai

    (Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands)

  • Teruo Nonomura

    (Department of Agricultural Science, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
    Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan)

Abstract

Type I trichomes of tomato leaves ( Solanum lycopersicum Mill. cv. Moneymaker), as outgrowths of the plant epidermis, are suitable for monitoring infection processes of powdery mildew species using a high-fidelity digital microscope (DM) without fungal staining. On the trichomes, tomato powdery mildew ( Pseudoidium neolycopersici L. Kiss) isolate KTP-03 produced a maximum of four vigorously elongated hyphae per conidium, which stopped growth approximately 12 days after inoculation. Single trichome cells, invaded by fungal hyphae at various fungal infection stages during the 12-day period after the inoculation of single conidia, were cut at the bases and directly collected with small precision scissors (i.e., microscissors) held by the manipulator under a DM. Subsequently, suc-polymerase chain reaction (PCR) (reverse transcription (RT)-PCR followed by nested (N)-PCR) was conducted to explore gene expression in the infected trichome. We selected intron-containing genes from tomatoes and powdery mildew fungi for the detection of constitutive gene transcripts, namely plasma membrane H + -ATPase ( LHA2 ) and β-tubulin 2 ( TUB2 ) genes. In suc-PCR, a single band from spliced mRNAs of both LHA2 and TUB2 genes were detected, suggesting that both genes were successfully transcribed in single KTP-03-infected trichomes. With combined primers for both LHA2 and TUB2 (multiplex RT-PCR/N-PCR), two bands were detected through the amplification of intron-spliced mRNAs of both genes. Therefore, our single-trichome cell PCR amplification method is effective for detecting the expression patterns of genes from both tomato and powdery mildew fungus. Combinations of digital microscopy, microscissors, and multiplex RT-PCR/N-PCR amplification techniques will be useful for simultaneously analysing the molecular interactions between plants and powdery mildew fungi at the level of single tomato leaf trichome cells. Also, this employed technique will be of benefit in other plant species and crops, possessing leaf trichome cells, to elucidate the molecular interactions between plants and pathogens.

Suggested Citation

  • Shota Iwasaki & Naoko Okada & Yutaka Kimura & Yoshihiro Takikawa & Tomoko Suzuki & Koji Kakutani & Yoshinori Matsuda & Yuling Bai & Teruo Nonomura, 2022. "Simultaneous Detection of Plant- and Fungus-Derived Genes Constitutively Expressed in Single Pseudoidium neolycopersici -Inoculated Type I Trichome Cells of Tomato Leaves via Multiplex RT-PCR and Nest," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:254-:d:746197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng Yang & Weiwei Cai & Ruijie Wu & Yu Huang & Qiaoling Lu & Hui Wang & Xueying Huang & Yapeng Zhang & Qing Wu & Xingge Cheng & Meiyun Wan & Jingang Lv & Qian Liu & Xiang Zheng & Shaoliang Mou & Dey, 2023. "Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    4. Norliza Abu-Bakar & Nor Mustaiqazah Juri & Ros Azrinawati Hana Abu-Bakar & Mohd Zulfadli Sohaime & Rafidah Badrun & Johari Sarip & Mohd Azhar Hassan & Khairulmazmi Ahmad, 2021. "Recombinant Protein Foliar Application Activates Systemic Acquired Resistance and Increases Tolerance against Papaya Dieback Disease," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 11(1), pages 1-9, March.
    5. Xin Tong & Jia-Jia Zhao & Ya-Lan Feng & Jing-Ze Zou & Jian Ye & Junfeng Liu & Chenggui Han & Dawei Li & Xian-Bing Wang, 2023. "A selective autophagy receptor VISP1 induces symptom recovery by targeting viral silencing suppressors," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Huanhuan Li & Wenqiang Men & Chao Ma & Qianwen Liu & Zhenjie Dong & Xiubin Tian & Chaoli Wang & Cheng Liu & Harsimardeep S. Gill & Pengtao Ma & Zhibin Zhang & Bao Liu & Yue Zhao & Sunish K. Sehgal & W, 2024. "Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase domain-like protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    8. Jincai Qiu & Yongshan Chen & Ying Feng & Xiaofeng Li & Jinghua Xu & Jinping Jiang, 2023. "Adaptation of Rhizosphere Microbial Communities to Continuous Exposure to Multiple Residual Antibiotics in Vegetable Farms," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    9. Arsheed H. Sheikh & Iosif Zacharia & Alonso J. Pardal & Ana Dominguez-Ferreras & Daniela J. Sueldo & Jung-Gun Kim & Alexi Balmuth & Jose R. Gutierrez & Brendon F. Conlan & Najeeb Ullah & Olivia M. Nip, 2023. "Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    11. Veronika DUMALASOVÁ & Leona SVOBODOVÁ & Alena HANZALOVÁ, 2012. "Differentially expressed gene transcripts in wheat and barley leaves upon leaf spot infection," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 48(3), pages 108-119.
    12. Mariam Amouzoune & Sajid Rehman & Rachid Benkirane & Swati Verma & Sanjaya Gyawali & Muamar Al-Jaboobi & Ramesh Pal Singh Verma & Zakaria Kehel & Ahmed Amri, 2022. "Genome-Wide Association Study of Leaf Rust Resistance at Seedling and Adult Plant Stages in a Global Barley Panel," Agriculture, MDPI, vol. 12(11), pages 1-26, November.
    13. Baokuan Xu & Xiyan Liu & Xuejiao Song & Qifang Guo & Yongqi Yin & Chunqing Zhang & Yan Li, 2022. "High-Vigor Maize Seeds Resist Fusarium graminearum Infection through Stronger Ca 2+ Signaling," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
    14. Lauren Brzozowski & Michael Mazourek, 2018. "A Sustainable Agricultural Future Relies on the Transition to Organic Agroecological Pest Management," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    15. Chantal Gascuel & Michèle Tixier-Boichard & Benoit Dedieu & Cécile Détang-Dessendre & Pierre Dupraz & Philippe Faverdin & Laurent Hazard & Philippe Hinsinger & Isabelle Litrico-Chiarelli & Françoise M, 2019. "Réflexion prospective interdisciplinaire pour l’agroécologie. Rapport de synthèse," Post-Print hal-02154433, HAL.
    16. Wenhao Li & Hongwei Zhu & Jinzhu Chen & Binglu Ru & Qin Peng & Jianqiang Miao & Xili Liu, 2024. "PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Deepak D. Bhandari & Dae Kwan Ko & Sang-Jin Kim & Kinya Nomura & Sheng Yang He & Federica Brandizzi, 2023. "Defense against phytopathogens relies on efficient antimicrobial protein secretion mediated by the microtubule-binding protein TGNap1," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Salvatore Cosentino & Mette Voldby Larsen & Frank Møller Aarestrup & Ole Lund, 2013. "PathogenFinder - Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    19. Wei Wei & Liangsheng Xu & Hao Peng & Wenjun Zhu & Kiwamu Tanaka & Jiasen Cheng & Karen A. Sanguinet & George Vandemark & Weidong Chen, 2022. "A fungal extracellular effector inactivates plant polygalacturonase-inhibiting protein," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Qi Li & Mingxi Zhou & Shweta Chhajed & Fahong Yu & Sixue Chen & Yanping Zhang & Zhonglin Mou, 2023. "N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P)," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:254-:d:746197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.