IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p307-d1338903.html
   My bibliography  Save this article

Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography

Author

Listed:
  • Gelsomina Manganiello

    (Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy)

  • Nicola Nicastro

    (Consiglio per la Ricerca in Agricoltura e l’analisi Dell’economia Agraria (CREA), Centro di Ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy)

  • Luciano Ortenzi

    (Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo De Lellis, s.n.c.—01100 Viterbo & via Angelo Maria Ricci 35, 02100 Rieti, Italy
    Consiglio per la Ricerca in Agricoltura e l’analisi Dell’economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, via Della Pascolare 16, 00015 Monterotondo, Italy)

  • Federico Pallottino

    (Consiglio per la Ricerca in Agricoltura e l’analisi Dell’economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, via Della Pascolare 16, 00015 Monterotondo, Italy)

  • Corrado Costa

    (Consiglio per la Ricerca in Agricoltura e l’analisi Dell’economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, via Della Pascolare 16, 00015 Monterotondo, Italy)

  • Catello Pane

    (Consiglio per la Ricerca in Agricoltura e l’analisi Dell’economia Agraria (CREA), Centro di Ricerca Orticoltura e Florovivaismo, via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy)

Abstract

Fusarium oxysporum f. sp. lactucae is one of the most aggressive baby-lettuce soilborne pathogens. The application of Trichoderma spp. as biocontrol agents can minimize fungicide treatments and their effective targeted use can be enhanced by support of digital technologies. In this work, two Trichoderma harzianum strains achieved 40–50% inhibition of pathogen radial growth in vitro. Their effectiveness in vivo was surveyed by assessing disease incidence and severity and acquiring hyperspectral and thermal features of the canopies being treated. Infected plants showed a reduced light absorption in the green and near-red regions over time, reflecting the disease progression. In contrast, Trichoderma -treated plant reflectance signatures, even in the presence of the pathogen, converged towards the healthy control values. Seventeen vegetation indices were selected to follow disease progression. The thermographic data were informative in the middle–late stages of disease (15 days post-infection) when symptoms were already visible. A machine-learning model based on hyperspectral data enabled the early detection of the wilting starting from 6 days post-infection, and three different spectral regions sensitive to baby-lettuce wilting (470–490 nm, 740–750 nm, and 920–940 nm) were identified. The obtained results pioneer an effective AI-based decision support system (DSS) for crop monitoring and biocontrol-based management.

Suggested Citation

  • Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:307-:d:1338903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    2. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    3. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    4. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    5. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    6. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    7. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    8. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    9. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    11. Beatriz Val-Torregrosa & Mireia Bundó & Blanca San Segundo, 2021. "Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice," Agriculture, MDPI, vol. 11(8), pages 1-21, August.
    12. Sisay Kidane Alemu & Ayele Badebo Huluka & Kassahun Tesfaye & Teklehaimanot Haileselassie & Cristobal Uauy, 2021. "Genome-wide association mapping identifies yellow rust resistance loci in Ethiopian durum wheat germplasm," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-28, May.
    13. Adeeb Rahman & Neeti Sanan-Mishra, 2024. "When an Intruder Comes Home: GM and GE Strategies to Combat Virus Infection in Plants," Agriculture, MDPI, vol. 14(2), pages 1-26, February.
    14. Xiaozhen Zhao & Yiming Wang & Bingqin Yuan & Hanxi Zhao & Yujie Wang & Zheng Tan & Zhiyuan Wang & Huijun Wu & Gang Li & Wei Song & Ravi Gupta & Kenichi Tsuda & Zhonghua Ma & Xuewen Gao & Qin Gu, 2024. "Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Nkulu Kabange Rolly & Qari Muhammad Imran & Hyun-Ho Kim & Nay Chi Aye & Adil Hussain & Kyung-Min Kim & Byung-Wook Yun, 2020. "Pathogen-Induced Expression of OsDHODH1 Suggests Positive Regulation of Basal Defense Against Xanthomonas oryzae pv. oryzae in Rice," Agriculture, MDPI, vol. 10(11), pages 1-19, November.
    16. Stella Cesari & Yuxuan Xi & Nathalie Declerck & Véronique Chalvon & Léa Mammri & Martine Pugnière & Corinne Henriquet & Karine Guillen & Vincent Chochois & André Padilla & Thomas Kroj, 2022. "New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Guotai Yu & Oadi Matny & Nicolas Champouret & Burkhard Steuernagel & Matthew J. Moscou & Inmaculada Hernández-Pinzón & Phon Green & Sadiye Hayta & Mark Smedley & Wendy Harwood & Ngonidzashe Kangara & , 2022. "Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Xiaomin Wang & Rui Cheng & Daochao Xu & Renliang Huang & Haoxing Li & Liang Jin & Yufeng Wu & Jiuyou Tang & Changhui Sun & Deliang Peng & Chengcai Chu & Xiaoli Guo, 2023. "MG1 interacts with a protease inhibitor and confers resistance to rice root-knot nematode," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Chia-Yu Hsiao & Sabrina Diana Blanco & An-Li Peng & Ju-Yin Fu & Bo-Wei Chen & Min-Chia Luo & Xing-Yu Xie & Yi-Hsien Lin, 2023. "Seed Treatment with Calcium Carbonate Containing Bacillus amyloliquefaciens PMB05 Powder Is an Efficient Way to Control Black Rot Disease of Cabbage," Agriculture, MDPI, vol. 13(5), pages 1-15, April.
    20. Lin Li & Shuangchao Wang & Xiufen Yang & Frederic Francis & Dewen Qiu, 2019. "Protein Elicitor PeaT1 Efficiently Controlled Barley Yellow Dwarf Virus in Wheat," Agriculture, MDPI, vol. 9(9), pages 1-8, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:307-:d:1338903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.