IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i6p469-d559192.html
   My bibliography  Save this article

Assessment of the Effect of Application of the Herbicide S-Metolachlor on the Activity of Some Enzymes Found in Soil

Author

Listed:
  • Marioara Nicoleta Filimon

    (Department Biology-Chemistry, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Pestalozzi 16, 300315 Timisoara, Romania
    Advanced Environmental Research Laboratories (AERL), Oituz 4, 300086 Timisoara, Romania)

  • Diana Larisa Roman

    (Department Biology-Chemistry, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Pestalozzi 16, 300315 Timisoara, Romania
    Advanced Environmental Research Laboratories (AERL), Oituz 4, 300086 Timisoara, Romania)

  • Ion Valeriu Caraba

    (Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine “King Mihai I of Romania” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania)

  • Adriana Isvoran

    (Department Biology-Chemistry, Faculty of Chemistry-Biology-Geography, West University of Timisoara, Pestalozzi 16, 300315 Timisoara, Romania
    Advanced Environmental Research Laboratories (AERL), Oituz 4, 300086 Timisoara, Romania)

Abstract

Herbicides are being used more and more to increase productivity in agriculture, but their excessive has been shown to lead to adverse effects on the environment, especially on the soil. Within this study the effect of the herbicide S-metolachlor on the activity of several enzymes (dehydrogenase, protease, phosphatase and urease) found in the loamy-clayey soil has been analyzed. There were seven experimental variants corresponding to the untreated soil and to the application of six distinct doses of S-metolachlor on soil samples maintained in laboratory conditions. Biochemical analyzes have been performed to assess the activities of the investigated enzymes at 7, 14 and 21 days, respectively, and several physiochemical parameters of the soil have been also monitored during these experiments. The data obtained in the experimental determinations were subjected to statistical analysis such as to evaluate if the changes in the activities of enzymes are significant and to establish if there are correlations between the evolution of analyzed enzymatic activities and the physicochemical parameters of the soil. Molecular docking approach has been also used to assess the interactions between the herbicide and investigated enzymes. The activities of studied enzymes decreased in a dose-dependent manner when the herbicide was applied. More than 21 days were necessary to recover the activities of dehydrogenase and protease in the soil treated with S-metolachlor, the activity of protease was recovered after 14 days and the activity of urease was recuperated after 7 days of incubation. This study also emphasized significant correlations between the enzymatic activities and some physicochemical parameters of the soil: pH, moisture, organic matter, nitrogen level and available phosphorus.

Suggested Citation

  • Marioara Nicoleta Filimon & Diana Larisa Roman & Ion Valeriu Caraba & Adriana Isvoran, 2021. "Assessment of the Effect of Application of the Herbicide S-Metolachlor on the Activity of Some Enzymes Found in Soil," Agriculture, MDPI, vol. 11(6), pages 1-16, May.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:469-:d:559192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/6/469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/6/469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cezary A. Kwiatkowski & Elżbieta Harasim & Beata Feledyn-Szewczyk & Jacek Antonkiewicz, 2020. "Enzymatic Activity of Loess Soil in Organic and Conventional Farming Systems," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Avila & Nilda Roma-Burgos, 2023. "Herbicide Physiology and Environmental Fate," Agriculture, MDPI, vol. 13(6), pages 1-2, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shangyi Lou & Jin He & Hongwen Li & Qingjie Wang & Caiyun Lu & Wenzheng Liu & Peng Liu & Zhenguo Zhang & Hui Li, 2021. "Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields," Agriculture, MDPI, vol. 11(7), pages 1-17, June.
    2. Nontobeko Gloria Maphuhla & Francis Bayo Lewu & Opeoluwa Oyehan Oyedeji, 2020. "The Effects of Physicochemical Parameters on Analysed Soil Enzyme Activity from Alice Landfill Site," IJERPH, MDPI, vol. 18(1), pages 1-15, December.
    3. Xue Yang & Yuzheng Li & Chunying Li & Qianqian Li & Bin Qiao & Sen Shi & Chunjian Zhao, 2021. "Enhancement of Interplanting of Ficus carica L. with Taxus cuspidata Sieb. et Zucc. on Growth of Two Plants," Agriculture, MDPI, vol. 11(12), pages 1-14, December.
    4. Lin Wang & Mandeep Kaur & Ping Zhang & Ji Li & Ming Xu, 2021. "Effect of Different Agricultural Farming Practices on Microbial Biomass and Enzyme Activities of Celery Growing Field Soil," IJERPH, MDPI, vol. 18(23), pages 1-13, December.
    5. Sylwia Wesołowska & Barbara Futa & Magdalena Myszura & Agata Kobyłka, 2022. "Residual Effects of Different Cropping Systems on Physicochemical Properties and the Activity of Phosphatases of Soil," Agriculture, MDPI, vol. 12(5), pages 1-16, May.
    6. Marioara Nicoleta Caraba & Diana Larisa Roman & Ion Valeriu Caraba & Adriana Isvoran, 2023. "Assessment of the Effects of the Herbicide Aclonifen and Its Soil Metabolites on Soil and Aquatic Environments," Agriculture, MDPI, vol. 13(6), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:6:p:469-:d:559192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.