IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i5p424-d550614.html
   My bibliography  Save this article

Evaluating the SSEBop and RSPMPT Models for Irrigated Fields Daily Evapotranspiration Mapping with MODIS and CMADS Data

Author

Listed:
  • Qifeng Zhuang

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Yintao Shi

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Hua Shao

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

  • Gang Zhao

    (Jiangsu Provincial Hydraulic Research Institute, Nanjing 210017, China)

  • Dong Chen

    (College of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China)

Abstract

It is of great convenience to map daily evapotranspiration (ET) by remote sensing for agricultural water management without computing each surface energy component. This study used the operational simplified surface energy balance (SSEBop) and the remote sensing-based Penman–Monteith and Priestly–Taylor (RSPMPT) models to compute continuous daily ET over irrigated fields with the MODIS and CMADS data. The estimations were validated with eddy covariance (EC) measurements. Overall, the performance of RSPMPT with locally calibrated parameters was slightly better than that of SSEBop, with higher NSE (0.84 vs. 0.78) and R 2 (0.86 vs. 0.81), lower RMSE (0.78 mm·d −1 vs. 0.90 mm·d −1 ), although it had higher bias (0.03 mm·d −1 vs. 0.01 mm·d −1 ) and PBias (1.41% vs. 0.59%). Due to the consideration of land surface temperature, the SSEBop was more sensitive to ET’s change caused by irrigation before sowing in March and had a lower PBias (6.7% vs. 39.8%) than RSPMPT. On cloudy days, the SSEBop is more likely to overestimate ET than the RSPMPT. To conclude, driven by MODIS and CMADS data, the two simple models can be easily applied to map daily ET over cropland. The SSEBop is more practical in the absence of measured data to optimize the RSPMPT model parameters.

Suggested Citation

  • Qifeng Zhuang & Yintao Shi & Hua Shao & Gang Zhao & Dong Chen, 2021. "Evaluating the SSEBop and RSPMPT Models for Irrigated Fields Daily Evapotranspiration Mapping with MODIS and CMADS Data," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:424-:d:550614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/5/424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/5/424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Senay, G.B. & Budde, M.E. & Verdin, J.P., 2011. "Enhancing the Simplified Surface Energy Balance (SSEB) approach for estimating landscape ET: Validation with the METRIC model," Agricultural Water Management, Elsevier, vol. 98(4), pages 606-618, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qifeng Zhuang & Hua Shao & Dongliang Guan, 2022. "Operational daily evapotranspiration mapping at field scale based on SSEBop model and spatiotemporal fusion of multi-source remote sensing data," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    2. Lian, Jinjiao & Huang, Mingbin, 2016. "Comparison of three remote sensing based models to estimate evapotranspiration in an oasis-desert region," Agricultural Water Management, Elsevier, vol. 165(C), pages 153-162.
    3. Pir Mohammad & Ajanta Goswami, 2023. "Exploring different indicators for quantifying surface urban heat and cool island together: A case study over two metropolitan cities of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10857-10878, October.
    4. Smail, Robert & Nocco, Mallika & Colquhoun, Jed & Wang, Yi, 2021. "Remotely-sensed water budgets for agriculture in the upper midwestern United States," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Mercedeh Taheri & Abdolmajid Mohammadian & Fatemeh Ganji & Mostafa Bigdeli & Mohsen Nasseri, 2022. "Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges," Energies, MDPI, vol. 15(4), pages 1-57, February.
    6. Ting-Wu Chuang & Michael C Wimberly, 2012. "Remote Sensing of Climatic Anomalies and West Nile Virus Incidence in the Northern Great Plains of the United States," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-10, October.
    7. Christa D. Peters-Lidard & Kevin C. Rose & Julie E. Kiang & Michael L. Strobel & Michael L. Anderson & Aaron R. Byrd & Michael J. Kolian & Levi D. Brekke & Derek S. Arndt, 2021. "Indicators of climate change impacts on the water cycle and water management," Climatic Change, Springer, vol. 165(1), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:5:p:424-:d:550614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.