IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i9p387-d408188.html
   My bibliography  Save this article

An Efficient Case Retrieval Algorithm for Agricultural Case-Based Reasoning Systems, with Consideration of Case Base Maintenance

Author

Listed:
  • Zhaoyu Zhai

    (Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain)

  • José-Fernán Martínez Ortega

    (Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain)

  • Néstor Lucas Martínez

    (Departamento de Ingeniería Telemática y Electrónica (DTE), Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación (ETSIST), Universidad Politécnica de Madrid (UPM), C/Nikola Tesla, s/n, 28031 Madrid, Spain)

  • Huanliang Xu

    (College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China)

Abstract

Case-based reasoning has considerable potential to model decision support systems for smart agriculture, assisting farmers in managing farming operations. However, with the explosive amount of sensing data, these systems may achieve poor performance in knowledge management like case retrieval and case base maintenance. Typical approaches of case retrieval have to traverse all past cases for matching similar ones, leading to low efficiency. Thus, a new case retrieval algorithm for agricultural case-based reasoning systems is proposed in this paper. At the initial stage, an association table is constructed, containing the relationships between all past cases. Afterwards, attributes of a new case are compared with an entry case. According to the similarity measurement, associated similar or dissimilar cases are then compared preferentially, instead of traversing the whole case base. The association of the new case is generated through case retrieval and added in the association table at the step of case retention. The association table is also updated when a closer relationship is detected. The experiment result demonstrates that our proposal enables rapid case retrieval with promising accuracy by comparing a fewer number of past cases. Thus, the retrieval efficiency of our proposal outperforms typical approaches.

Suggested Citation

  • Zhaoyu Zhai & José-Fernán Martínez Ortega & Néstor Lucas Martínez & Huanliang Xu, 2020. "An Efficient Case Retrieval Algorithm for Agricultural Case-Based Reasoning Systems, with Consideration of Case Base Maintenance," Agriculture, MDPI, vol. 10(9), pages 1-21, September.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:387-:d:408188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/9/387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/9/387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wanglin Ma & Alan Renwick & Quentin Grafton, 2018. "Farm machinery use, off†farm employment and farm performance in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(2), pages 279-298, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiuhao Quan & Reiner Doluschitz, 2021. "Factors Influencing the Adoption of Agricultural Machinery by Chinese Maize Farmers," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    2. Xiang Li & Xiaoqin Guo, 2023. "Can Policy Promote Agricultural Service Outsourcing? Quasi-Natural Experimental Evidence from China," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    3. Zou, Baoling & Mishra, Ashok K., 2023. "Does Mechanization Improve the Regional Economy? A County-Level Empirical Assessment from China," 2023 Annual Meeting, July 23-25, Washington D.C. 335478, Agricultural and Applied Economics Association.
    4. Xin Deng & Zhongcheng Yan & Dingde Xu & Yanbin Qi, 2020. "Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China," Land, MDPI, vol. 9(3), pages 1-14, March.
    5. Zheng, Linyi, 2023. "Impact of off-farm employment on cooking fuel choices: Implications for rural-urban transformation in advancing sustainable energy transformation," Energy Economics, Elsevier, vol. 118(C).
    6. Xi Yu & Xiyang Yin & Yuying Liu & Dongmei Li, 2021. "Do Agricultural Machinery Services Facilitate Land Transfer? Evidence from Rice Farmers in Sichuan Province, China," Land, MDPI, vol. 10(5), pages 1-14, April.
    7. Deng, Xin & Xu, Dingde & Zeng, Miao & Qi, Yanbin, 2019. "Does Internet use help reduce rural cropland abandonment? Evidence from China," Land Use Policy, Elsevier, vol. 89(C).
    8. Wanglin Ma & Huanguang Qiu & Dil Bahadur Rahut, 2023. "Rural development in the digital age: Does information and communication technology adoption contribute to credit access and income growth in rural China?," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1421-1444, August.
    9. Bouchakour, Radhia & Saad, Mohammed, 2020. "Farm and farmer characteristics and off-farm work: evidence from Algeria," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    10. Xin Deng & Miao Zeng & Dingde Xu & Yanbin Qi, 2022. "Why do landslides impact farmland abandonment? Evidence from hilly and mountainous areas of rural China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 699-718, August.
    11. Yang Shen & Xiaoyang Guo & Xiuwu Zhang, 2023. "Digital Financial Inclusion, Land Transfer, and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    12. Xiaoshi Zhou & Wanglin Ma & Gucheng Li, 2018. "Draft Animals, Farm Machines and Sustainable Agricultural Production: Insight from China," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    13. Qian, Long & Lu, Hua & Gao, Qiang & Lu, Hualiang, 2022. "Household-owned farm machinery vs. outsourced machinery services: The impact of agricultural mechanization on the land leasing behavior of relatively large-scale farmers in China," Land Use Policy, Elsevier, vol. 115(C).
    14. Zou, Baoling & Mishra, Ashok K. & Luo, Biliang, 2020. "Do Chinese farmers benefit from farmland leasing choices? Evidence from a nationwide survey," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    15. Jing Zhang & Jianhua Wang & Xiaoshi Zhou, 2019. "Farm Machine Use and Pesticide Expenditure in Maize Production: Health and Environment Implications," IJERPH, MDPI, vol. 16(10), pages 1-13, May.
    16. Hongyun Zheng & Wanglin Ma, 2021. "The role of resource reallocation in promoting total factor productivity growth: Insights from China’s agricultural sector," Review of Development Economics, Wiley Blackwell, vol. 25(4), pages 2350-2371, November.
    17. Siyu Yang & Wei Li, 2022. "The Impact of Socialized Agricultural Machinery Services on Land Productivity: Evidence from China," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    18. Jin Liu & Yufeng Lu & Qing Xu & Qing Yang, 2019. "Public Health Insurance, Non-Farm Labor Supply, and Farmers’ Income: Evidence from New Rural Cooperative Medical Scheme," IJERPH, MDPI, vol. 16(23), pages 1-15, December.
    19. Kun Song & Yu Tang & Dungang Zang & Hua Guo & Wenting Kong, 2022. "Does Digital Finance Increase Relatively Large-Scale Farmers’ Agricultural Income through the Allocation of Production Factors? Evidence from China," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    20. Xue Shen & Quanyu Yang & Ting Qiu & Rongjun Ao, 2023. "Off-Farm Employment, Outsourced Machinery Services, and Farmers’ Ratoon Rice Production Behavior: Evidence from Rice Farmers in Central China," Agriculture, MDPI, vol. 13(10), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:9:p:387-:d:408188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.