IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i11p573-d449680.html
   My bibliography  Save this article

Pathogen-Induced Expression of OsDHODH1 Suggests Positive Regulation of Basal Defense Against Xanthomonas oryzae pv. oryzae in Rice

Author

Listed:
  • Nkulu Kabange Rolly

    (Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
    National Laboratory of Seed Testing, National Seed Service, SENASEM, Ministry of Agriculture, Kinshasa 904 KIN1, Democratic Republic of the Congo)

  • Qari Muhammad Imran

    (Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Hyun-Ho Kim

    (Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Nay Chi Aye

    (Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Adil Hussain

    (Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Pakistan)

  • Kyung-Min Kim

    (Laboratory of Plant Molecular Breeding, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

  • Byung-Wook Yun

    (Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea)

Abstract

Bacterial leaf blight (BLB), a vascular disease caused by Xanthomonas oryzae pv. oryzae ( Xoo ), induces a significant reduction in rice yield in severe epidemics. This study investigated the transcriptional regulation of the OsDHODH1 gene in rice cultivars exposed to the Xoo K3 isolate. The symptoms were monitored on a daily basis, and the lesion length of inoculated rice plants was scored 21 days post inoculation (dpi). The most resistant and the highly susceptible cultivars were used for gene expression analysis. The dihydroorotate dehydrogenase (DHODH) domain is shared by many proteins in different plant species, and in Arabidopsis , this protein is encoded by the AtPYD1 gene. To investigate the functional role of the OsDHODH1 gene under bacterial infection, we inoculated the Arabidopsis pyd1-2 knockout ( atpyd1-2) plants, lacking the AtPYD1 gene (orthologous gene of the rice OsDHODH1 ), with Pseudomonas syringae pv. tomato ( Pst ) DC3000 vir , and the phenotypic response was scored 9 dpi. Results show that OsDHODH1 was upregulated in Tunnae, the most resistant rice cultivar but downregulated in IRAT112, the highly susceptible rice cultivar. In addition, Tunnae, Sipi and NERICA-L14 exhibited a durable resistance phenotype towards Xoo K3 isolate 21 dpi. Moreover, the expression of OsPR1a and OsPR10b (the rice pathogenesis inducible genes) was significantly upregulated in Tunnae, while being suppressed in IRAT112. Furthermore, the atpyd1-2 plants exhibited a high susceptibility towards Pst DC3000 vir . AtPR1 and AtPR2 (the Arabidopsis pathogenesis inducible genes) transcripts decreased in the atpyd1-2 plants compared to Col-0 (wild type) plants. Due to the above, OsDHODH1 and AtPYD1 are suggested to be involved in the basal adaptive response mechanisms towards bacterial pathogen resistance in plants.

Suggested Citation

  • Nkulu Kabange Rolly & Qari Muhammad Imran & Hyun-Ho Kim & Nay Chi Aye & Adil Hussain & Kyung-Min Kim & Byung-Wook Yun, 2020. "Pathogen-Induced Expression of OsDHODH1 Suggests Positive Regulation of Basal Defense Against Xanthomonas oryzae pv. oryzae in Rice," Agriculture, MDPI, vol. 10(11), pages 1-19, November.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:573-:d:449680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/11/573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/11/573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan D. G. Jones & Jeffery L. Dangl, 2006. "The plant immune system," Nature, Nature, vol. 444(7117), pages 323-329, November.
    2. Wei Wang & Jinyoung Yang Barnaby & Yasuomi Tada & Hairi Li & Mahmut Tör & Daniela Caldelari & Dae-un Lee & Xiang-Dong Fu & Xinnian Dong, 2011. "Timing of plant immune responses by a central circadian regulator," Nature, Nature, vol. 470(7332), pages 110-114, February.
    3. Keyu Gu & Bing Yang & Dongsheng Tian & Lifang Wu & Dongjiang Wang & Chellamma Sreekala & Fan Yang & Zhaoqing Chu & Guo-Liang Wang & Frank F. White & Zhongchao Yin, 2005. "R gene expression induced by a type-III effector triggers disease resistance in rice," Nature, Nature, vol. 435(7045), pages 1122-1125, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamoru Matsumura & Mika Nomoto & Tomotaka Itaya & Yuri Aratani & Mizuki Iwamoto & Takakazu Matsuura & Yuki Hayashi & Tsuyoshi Mori & Michael J. Skelly & Yoshiharu Y. Yamamoto & Toshinori Kinoshita & I, 2022. "Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Paul Vincelli, 2016. "Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    3. Rongrong Zhang & Yu Wu & Xiangru Qu & Wenjuan Yang & Qin Wu & Lin Huang & Qiantao Jiang & Jian Ma & Yazhou Zhang & Pengfei Qi & Guoyue Chen & Yunfeng Jiang & Youliang Zheng & Xiaojie Wang & Yuming Wei, 2024. "The RING-finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Farhan Ali & Qingchun Pan & Genshen Chen & Kashif Rafiq Zahid & Jianbing Yan, 2013. "Evidence of Multiple Disease Resistance (MDR) and Implication of Meta-Analysis in Marker Assisted Selection," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    5. Soohyun Oh & Myung-Shin Kim & Hui Jeong Kang & Taewon Kim & Junhyeong Kong & Doil Choi, 2024. "Conserved effector families render Phytophthora species vulnerable to recognition by NLR receptors in nonhost plants," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Karine de Guillen & Diana Ortiz-Vallejo & Jérome Gracy & Elisabeth Fournier & Thomas Kroj & André Padilla, 2015. "Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi," PLOS Pathogens, Public Library of Science, vol. 11(10), pages 1-27, October.
    7. Conner J. Rogan & Yin-Yuin Pang & Sophie D. Mathews & Sydney E. Turner & Alexandra J. Weisberg & Silke Lehmann & Doris Rentsch & Jeffrey C. Anderson, 2024. "Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Seyedeh Najmeh Banihashemian & Seyed Mahyar Mirmajlessi, 2025. "Epigenetic Modifications, Immune Control Processes, and Plant Responses to Nematodes," Agriculture, MDPI, vol. 15(7), pages 1-19, March.
    9. Md Mijanur Rahman Rajib & Kuikui Li & Md Saikat Hossain Bhuiyan & Wenxia Wang & Jin Gao & Heng Yin, 2024. "Konjac Glucomannan Oligosaccharides (KGMOS) Confers Innate Immunity against Phytophthora nicotianae in Tobacco," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    10. Matheus Thomas Kuska & Jan Behmann & Mahsa Namini & Erich-Christian Oerke & Ulrike Steiner & Anne-Katrin Mahlein, 2019. "Discovering coherency of specific gene expression and optical reflectance properties of barley genotypes differing for resistance reactions against powdery mildew," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-20, March.
    11. Gelsomina Manganiello & Nicola Nicastro & Luciano Ortenzi & Federico Pallottino & Corrado Costa & Catello Pane, 2024. "Trichoderma Biocontrol Performances against Baby-Lettuce Fusarium Wilt Surveyed by Hyperspectral Imaging-Based Machine Learning and Infrared Thermography," Agriculture, MDPI, vol. 14(2), pages 1-18, February.
    12. Gaële Lajeunesse & Charles Roussin-Léveillée & Sophie Boutin & Élodie Fortin & Isabelle Laforest-Lapointe & Peter Moffett, 2023. "Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Ana Cruz-Silva & Andreia Figueiredo & Mónica Sebastiana, 2021. "First Insights into the Effect of Mycorrhizae on the Expression of Pathogen Effectors during the Infection of Grapevine with Plasmopara viticola," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    15. Manish Kumar & Amandeep Brar & Monika Yadav & Aakash Chawade & V. Vivekanand & Nidhi Pareek, 2018. "Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens," Agriculture, MDPI, vol. 8(7), pages 1-12, June.
    16. Costas Bouyioukos & Matthew J Moscou & Nicolas Champouret & Inmaculada Hernández-Pinzón & Eric R Ward & Brande B H Wulff, 2013. "Characterisation and Analysis of the Aegilops sharonensis Transcriptome, a Wild Relative of Wheat in the Sitopsis Section," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    17. Carmen Santos & Susana Trindade Leitão, 2023. "The Exceptionally Large Genomes of the Fabeae Tribe: Comparative Genomics and Applications in Abiotic and Biotic Stress Studies," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
    18. Jan Bettgenhaeuser & Inmaculada Hernández-Pinzón & Andrew M. Dawson & Matthew Gardiner & Phon Green & Jodie Taylor & Matthew Smoker & John N. Ferguson & Peter Emmrich & Amelia Hubbard & Rosemary Bay, 2021. "The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    19. Lyudmila Plotnikova & Violetta Pozherukova & Valeria Knaub & Yuryi Kashuba, 2022. "What Was the Reason for the Durable Effect of Sr31 against Wheat Stem Rust?," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    20. Jianghua Cai & Sayantan Panda & Yana Kazachkova & Eden Amzallag & Zhengguo Li & Sagit Meir & Ilana Rogachev & Asaph Aharoni, 2024. "A NAC triad modulates plant immunity by negatively regulating N-hydroxy pipecolic acid biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:11:p:573-:d:449680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.