IDEAS home Printed from https://ideas.repec.org/a/for/ijafaa/y2005i1p29-35.html
   My bibliography  Save this article

The Forecasting Canon: Nine Generalizations to Improve Forecast Accuracy

Author

Listed:
  • J. Scott Armstrong

Abstract

Using findings from empirical-based comparisons, the author presents nine generalizations that can improve forecast accuracy. These are often ignored by organizations, so that attention to them offers substantial opportunities for gain. Copyright International Institute of Forecasters, 2005

Suggested Citation

  • J. Scott Armstrong, 2005. "The Forecasting Canon: Nine Generalizations to Improve Forecast Accuracy," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 1, pages 29-35, June.
  • Handle: RePEc:for:ijafaa:y:2005:i:1:p:29-35
    as

    Download full text from publisher

    File URL: https://foresight.forecasters.org/shop/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Etienne Theising, 2024. "Distributional Reference Class Forecasting of Corporate Sales Growth With Multiple Reference Variables," Papers 2405.03402, arXiv.org.
    2. P. J. Lamberson & Scott E. Page, 2012. "Optimal Forecasting Groups," Management Science, INFORMS, vol. 58(4), pages 805-810, April.
    3. Etienne Theising & Dominik Wied & Daniel Ziggel, 2023. "Reference class selection in similarity‐based forecasting of corporate sales growth," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1069-1085, August.
    4. Karvetski, Christopher W. & Meinel, Carolyn & Maxwell, Daniel T. & Lu, Yunzi & Mellers, Barbara A. & Tetlock, Philip E., 2022. "What do forecasting rationales reveal about thinking patterns of top geopolitical forecasters?," International Journal of Forecasting, Elsevier, vol. 38(2), pages 688-704.
    5. Brighton, Henry & Gigerenzer, Gerd, 2015. "The bias bias," Journal of Business Research, Elsevier, vol. 68(8), pages 1772-1784.
    6. Sanchez-Ubeda, Eugenio Fco. & Berzosa, Ana, 2007. "Modeling and forecasting industrial end-use natural gas consumption," Energy Economics, Elsevier, vol. 29(4), pages 710-742, July.
    7. Bera, Soumitra Kumar, 2010. "Forecasting model of small scale industrial sector of West Bengal," MPRA Paper 28144, University Library of Munich, Germany.
    8. Tang, Hui-Wen Vivian & Yin, Mu-Shang, 2012. "Forecasting performance of grey prediction for education expenditure and school enrollment," Economics of Education Review, Elsevier, vol. 31(4), pages 452-462.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:for:ijafaa:y:2005:i:1:p:29-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Gilliland (email available below). General contact details of provider: https://edirc.repec.org/data/iiforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.