IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Value-at-Risk-Estimation in the Mexican Stock Exchange Using Conditional Heteroscedasticity Models and Theory of Extreme Values

Listed author(s):
  • Alejandro Iván Aguirre Salado


    (Posgrado en Estadística, Colegio de Posgraduados, Campus Montecillo. Texcoco, E.M. Mexico.)

  • Humberto Vaquera Huerta


    (Profesor investigador titular, Posgrado Forestal, Colegio de Posgraduados, Campus Montecillo. Texcoco, E.M. Mexico.)

  • Martha Elva Ramírez Guzmán


    (Profesora investigadora titular, Posgrado en Estadística, Colegio de Posgraduados, Campus Montecillo. Texcoco, E.M. Mexico.)

  • José René Valdez Lazalde


    (Profesor investigador titular, Posgrado forestal, Colegio de Posgraduados, Campus Montecillo. Texcoco, E.M. Mexico.)

  • Carlos Arturo Aguirre Salado


    (Profesor investigador, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí. San Luis Potosí, S.L.P. Mexico.)

Registered author(s):

    This work proposes an approach for estimating value at risk (VaR) of the Mexican stock exchange index (IPC) by using a combination of the autoregressive moving average models (ARMA); three different models of the arch family, one symmetric (GARCH) and two asymmetric (GJR-GARCH and EGARCH); and the extreme value theory (EVT). The ARMA models were initially used to obtain uncorrelated residuals, which were later used for the analysis of extreme values. The GARCH, EGARCH and GJR-GARCH models, by including past volatility, are particularly useful both in instability and calm periods. Moreover, the asymmetric models GJR-GARCH and EGARCH handle differently the impact of positive and negative shocks in the market. The importance of the IPC in the Mexican economy raises the need to study its variations, particularly its downward movement; so, we propose to use VaR to calculate the maximum loss that IPC may have, at a certain level of reliability, in a given period of time, using more efficient models to dynamically quantify volatility. The RiskMetrics approach was parallelly used as a way to compare the methodology proposed. The results indicate that the ARMA-GARCH-EVT methodology showed a better performance than RiskMetrics, because of the simultaneous adjustment of ARMA-GARCH models for returns and variances respectively. Although estimates of the EGARCH models had fewer violations of VaR, the estimates of the three models used for volatility were more accurate than the others, evaluated at the same error and reliability levels through the Kupiec Likelihood Ratio test.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Article provided by in its journal Economia Mexicana NUEVA EPOCA.

    Volume (Year): XXII (2013)
    Issue (Month): 1 (January-June)
    Pages: 177-205.

    in new window

    Handle: RePEc:emc:ecomex:v:22:y:2013:i:1:p:177-205
    Contact details of provider:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:emc:ecomex:v:22:y:2013:i:1:p:177-205. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ricardo Tiscareño)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.