IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v189y2024ics0191261524001449.html
   My bibliography  Save this article

Integrated departure and boundary control for low-altitude air city transport systems

Author

Listed:
  • Safadi, Yazan
  • Geroliminis, Nikolas
  • Haddad, Jack

Abstract

Connectivity and digitalization will enable new control measures in urban air mobility operations and open new ways for integrating these measures in real-time traffic management. Hence, new control strategies can be designed to regulate both demand and supply of Low-Altitude Air city Transport (LAAT) systems. This can be achieved by adjusting aircraft departure times, and manipulating transfer aircraft flows at boundary air regions. In this research, new model-based control strategies are designed, where aircraft departure management and boundary control strategies are integrated. The aviation operation can benefit from the proposed flow-oriented control paradigm, which can balance the LAAT system’s supply and demand, i.e. controlling the transfer flow between airspace regions and simultaneously managing the aircraft departure (inflow). The current paper presents the development of different control strategies: Departure Controller (DC), Boundary Controller (BC), and integrated Departure and Boundary Controller (DBC), with supporting simulation results. The designed controllers are tested in a new LAAT framework that considers modeling and control of LAAT operation while capturing the microscopic and macroscopic levels simultaneously.

Suggested Citation

  • Safadi, Yazan & Geroliminis, Nikolas & Haddad, Jack, 2024. "Integrated departure and boundary control for low-altitude air city transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001449
    DOI: 10.1016/j.trb.2024.103020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.