IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v80y2011i1p16-28.html
   My bibliography  Save this article

Estimation of parameters in large offspring number models and ratios of coalescence times

Author

Listed:
  • Eldon, Bjarki

Abstract

The ratio of singletons to the total number of segregating sites is used to estimate a reproduction parameter in a population model of large offspring numbers without having to jointly estimate the mutation rate. For neutral genetic variation, the ratio of singletons to the total number of segregating sites is equivalent to the ratio of total length of external branches to the total length of the gene genealogy. A multinomial maximum likelihood method that takes into account more frequency classes than just the singletons is developed to estimate the parameter of another large offspring number model. The performance of these methods with regard to sample size, mutation rate, and bias, is investigated by simulation. The expected value of the ratio of the total length of external branches to the total length of the whole tree is, using simulation, shown to decrease for the Kingman coalescent as sample size increases, but can increase or decrease, depending on parameter values, for Λ coalescents. Considering ratios of tree statistics, as opposed to considering lengths of various subtrees separately, can yield better insight into the dynamics of gene genealogies.

Suggested Citation

  • Eldon, Bjarki, 2011. "Estimation of parameters in large offspring number models and ratios of coalescence times," Theoretical Population Biology, Elsevier, vol. 80(1), pages 16-28.
  • Handle: RePEc:eee:thpobi:v:80:y:2011:i:1:p:16-28
    DOI: 10.1016/j.tpb.2011.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580911000414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2011.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durrett, Rick & Schweinsberg, Jason, 2005. "A coalescent model for the effect of advantageous mutations on the genealogy of a population," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1628-1657, October.
    2. Eldon, Bjarki, 2009. "Structured coalescent processes from a modified Moran model with large offspring numbers," Theoretical Population Biology, Elsevier, vol. 76(2), pages 92-104.
    3. Drmota, Michael & Iksanov, Alex & Moehle, Martin & Roesler, Uwe, 2007. "Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1404-1421, October.
    4. Schweinsberg, Jason, 2003. "Coalescent processes obtained from supercritical Galton-Watson processes," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 107-139, July.
    5. Sargsyan, Ori & Wakeley, John, 2008. "A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms," Theoretical Population Biology, Elsevier, vol. 74(1), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steinrücken, Matthias & Birkner, Matthias & Blath, Jochen, 2013. "Analysis of DNA sequence variation within marine species using Beta-coalescents," Theoretical Population Biology, Elsevier, vol. 87(C), pages 15-24.
    2. Eldon, Bjarki & Degnan, James H., 2012. "Multiple merger gene genealogies in two species: Monophyly, paraphyly, and polyphyly for two examples of Lambda coalescents," Theoretical Population Biology, Elsevier, vol. 82(2), pages 117-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blath, Jochen & Cronjäger, Mathias Christensen & Eldon, Bjarki & Hammer, Matthias, 2016. "The site-frequency spectrum associated with Ξ-coalescents," Theoretical Population Biology, Elsevier, vol. 110(C), pages 36-50.
    2. Eldon, Bjarki & Degnan, James H., 2012. "Multiple merger gene genealogies in two species: Monophyly, paraphyly, and polyphyly for two examples of Lambda coalescents," Theoretical Population Biology, Elsevier, vol. 82(2), pages 117-130.
    3. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    4. Bjarki Eldon, 2023. "Viability Selection at Linked Sites," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    5. Hobolth, Asger & Siri-Jégousse, Arno & Bladt, Mogens, 2019. "Phase-type distributions in population genetics," Theoretical Population Biology, Elsevier, vol. 127(C), pages 16-32.
    6. Eldon, Bjarki & Stephan, Wolfgang, 2018. "Evolution of highly fecund haploid populations," Theoretical Population Biology, Elsevier, vol. 119(C), pages 48-56.
    7. Steinrücken, Matthias & Birkner, Matthias & Blath, Jochen, 2013. "Analysis of DNA sequence variation within marine species using Beta-coalescents," Theoretical Population Biology, Elsevier, vol. 87(C), pages 15-24.
    8. Freund, Fabian & Siri-Jégousse, Arno, 2021. "The impact of genetic diversity statistics on model selection between coalescents," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Eldon, Bjarki, 2009. "Structured coalescent processes from a modified Moran model with large offspring numbers," Theoretical Population Biology, Elsevier, vol. 76(2), pages 92-104.
    10. Dhersin, Jean-Stéphane & Freund, Fabian & Siri-Jégousse, Arno & Yuan, Linglong, 2013. "On the length of an external branch in the Beta-coalescent," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1691-1715.
    11. Huillet, Thierry & Möhle, Martin, 2013. "On the extended Moran model and its relation to coalescents with multiple collisions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 5-14.
    12. Birkner, Matthias & Blath, Jochen & Steinrücken, Matthias, 2011. "Importance sampling for Lambda-coalescents in the infinitely many sites model," Theoretical Population Biology, Elsevier, vol. 79(4), pages 155-173.
    13. Arbisser, Ilana M. & Jewett, Ethan M. & Rosenberg, Noah A., 2018. "On the joint distribution of tree height and tree length under the coalescent," Theoretical Population Biology, Elsevier, vol. 122(C), pages 46-56.
    14. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    15. Hadzibeganovic, Tarik & Liu, Chao & Li, Rong, 2021. "Effects of reproductive skew on the evolution of ethnocentrism in structured populations with variable size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    16. Durrett, Rick & Schweinsberg, Jason, 2005. "A coalescent model for the effect of advantageous mutations on the genealogy of a population," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1628-1657, October.
    17. González Casanova, Adrián & Kurt, Noemi & Wakolbinger, Anton & Yuan, Linglong, 2016. "An individual-based model for the Lenski experiment, and the deceleration of the relative fitness," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2211-2252.
    18. Abraham, Romain & Delmas, Jean-François & He, Hui, 2021. "Some properties of stationary continuous state branching processes," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 309-343.
    19. Paul F. Slade, 2018. "Linearization of the Kingman Coalescent," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    20. Möhle, M., 2010. "Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2159-2173, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:80:y:2011:i:1:p:16-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.