IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v112y2016icp52-59.html
   My bibliography  Save this article

Evolution of reduced mutation under frequency-dependent selection

Author

Listed:
  • Liberman, Uri
  • Behar, Hilla
  • Feldman, Marcus W.

Abstract

Most models for the evolution of mutation under frequency-dependent selection involve some form of host–parasite interaction. These generally involve cyclic dynamics under which mutation may increase. Here we show that the reduction principle for the evolution of mutation, which is generally true for frequency-independent selection, also holds under frequency-dependent selection on haploids and diploids that does not involve cyclic dynamics.

Suggested Citation

  • Liberman, Uri & Behar, Hilla & Feldman, Marcus W., 2016. "Evolution of reduced mutation under frequency-dependent selection," Theoretical Population Biology, Elsevier, vol. 112(C), pages 52-59.
  • Handle: RePEc:eee:thpobi:v:112:y:2016:i:c:p:52-59
    DOI: 10.1016/j.tpb.2016.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580916300351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2016.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Csaba Pal & María D. Maciá & Antonio Oliver & Ira Schachar & Angus Buckling, 2007. "Coevolution with viruses drives the evolution of bacterial mutation rates," Nature, Nature, vol. 450(7172), pages 1079-1081, December.
    2. Kimberly A. Hughes & Anne E. Houde & Anna C. Price & F. Helen Rodd, 2013. "Mating advantage for rare males in wild guppy populations," Nature, Nature, vol. 503(7474), pages 108-110, November.
    3. M’Gonigle, L.K. & Shen, J.J. & Otto, S.P., 2009. "Mutating away from your enemies: The evolution of mutation rate in a host–parasite system," Theoretical Population Biology, Elsevier, vol. 75(4), pages 301-311.
    4. Murat Acar & Attila Becskei & Alexander van Oudenaarden, 2005. "Enhancement of cellular memory by reducing stochastic transitions," Nature, Nature, vol. 435(7039), pages 228-232, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian Mintz & Feng Fu, 2022. "The Point of No Return: Evolution of Excess Mutation Rate Is Possible Even for Simple Mutation Models," Mathematics, MDPI, vol. 10(24), pages 1-9, December.
    2. Shen, Hao & Liberman, Uri & Feldman, Marcus W., 2020. "Evolution of transmission modifiers under frequency-dependent selection and transmission in constant or fluctuating environments," Theoretical Population Biology, Elsevier, vol. 135(C), pages 56-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    2. M. Kleshnina & K. Kaveh & K. Chatterjee, 2020. "The role of behavioural plasticity in finite vs infinite populations," Papers 2009.13160, arXiv.org.
    3. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    4. Bingnan Li & Patrice Zeis & Yujie Zhang & Alisa Alekseenko & Eliska Fürst & Yerma Pareja Sanchez & Gen Lin & Manu M. Tekkedil & Ilaria Piazza & Lars M. Steinmetz & Vicent Pelechano, 2023. "Differential regulation of mRNA stability modulates transcriptional memory and facilitates environmental adaptation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Brittany Kraft & Valerie A Lemakos & Joseph Travis & Kimberly A Hughes & John FitzpatrickHandling editor, 2018. "Pervasive indirect genetic effects on behavioral development in polymorphic eastern mosquitofish," Behavioral Ecology, International Society for Behavioral Ecology, vol. 29(2), pages 289-300.
    6. Josephine R. Paris & James R. Whiting & Mitchel J. Daniel & Joan Ferrer Obiol & Paul J. Parsons & Mijke J. Zee & Christopher W. Wheat & Kimberly A. Hughes & Bonnie A. Fraser, 2022. "A large and diverse autosomal haplotype is associated with sex-linked colour polymorphism in the guppy," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    8. M’Gonigle, L.K. & Shen, J.J. & Otto, S.P., 2009. "Mutating away from your enemies: The evolution of mutation rate in a host–parasite system," Theoretical Population Biology, Elsevier, vol. 75(4), pages 301-311.
    9. Tobias May & Lee Eccleston & Sabrina Herrmann & Hansjörg Hauser & Jorge Goncalves & Dagmar Wirth, 2008. "Bimodal and Hysteretic Expression in Mammalian Cells from a Synthetic Gene Circuit," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-7, June.
    10. Zhou, Peipei & Cai, Shuiming & Liu, Zengrong & Chen, Luonan & Wang, Ruiqi, 2013. "Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 115-126.
    11. Shen, Hao & Liberman, Uri & Feldman, Marcus W., 2020. "Evolution of transmission modifiers under frequency-dependent selection and transmission in constant or fluctuating environments," Theoretical Population Biology, Elsevier, vol. 135(C), pages 56-63.
    12. Blanquart, François, 2014. "The demography of a metapopulation in an environment changing in time and space," Theoretical Population Biology, Elsevier, vol. 94(C), pages 1-9.
    13. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    14. Antun Skanata & Edo Kussell, 2021. "Ecological memory preserves phage resistance mechanisms in bacteria," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. Baumdicker, Franz & Sester-Huss, Elisabeth & Pfaffelhuber, Peter, 2020. "Modifiers of mutation rate in selectively fluctuating environments," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6843-6862.
    16. Carl Song & Hilary Phenix & Vida Abedi & Matthew Scott & Brian P Ingalls & Mads Kærn & Theodore J Perkins, 2010. "Estimating the Stochastic Bifurcation Structure of Cellular Networks," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-11, March.
    17. Benjamin B Kaufmann & Qiong Yang & Jerome T Mettetal & Alexander van Oudenaarden, 2007. "Heritable Stochastic Switching Revealed by Single-Cell Genealogy," PLOS Biology, Public Library of Science, vol. 5(9), pages 1-8, September.
    18. MacPherson, Ailene & Keeling, Matthew J. & Otto, Sarah P., 2021. "Coevolution fails to maintain genetic variation in a host–parasite model with constant finite population size," Theoretical Population Biology, Elsevier, vol. 137(C), pages 10-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:112:y:2016:i:c:p:52-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.