IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v80y2013i7p1409-1417.html
   My bibliography  Save this article

Characterising CCS learning: The role of quantitative methods and alternative approaches

Author

Listed:
  • Markusson, Nils
  • Chalmers, Hannah

Abstract

A number of energy scenario studies have suggested that carbon capture and storage (CCS) could make a significant contribution to reducing global carbon dioxide (CO2) emissions. This would require efforts to ensure rapid development and deployment. Since there is limited experience of CCS systems, it is hard to define ‘business as usual’ development. This leads to significant uncertainty for policy makers and other stakeholders with regard to characterising potential CCS pathways and assessing the scope for and risks of acceleration.

Suggested Citation

  • Markusson, Nils & Chalmers, Hannah, 2013. "Characterising CCS learning: The role of quantitative methods and alternative approaches," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1409-1417.
  • Handle: RePEc:eee:tefoso:v:80:y:2013:i:7:p:1409-1417
    DOI: 10.1016/j.techfore.2011.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162511002885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2011.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binz, Christian & Truffer, Bernhard, 2017. "Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts," Research Policy, Elsevier, vol. 46(7), pages 1284-1298.
    2. John Michael Humphries Choptiany & Ron Pelot & Kate Sherren, 2014. "An Interdisciplinary Perspective on Carbon Capture and Storage Assessment Methods," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 445-458, May.
    3. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:80:y:2013:i:7:p:1409-1417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.