IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v95y2014icp63-70.html
   My bibliography  Save this article

Adaptive FWER control procedure for grouped hypotheses

Author

Listed:
  • Zhao, Haibing

Abstract

In this paper, we discuss the multiple testing problem for grouped hypotheses. We propose weighted p-value procedures, which are theoretically shown to control the family-wise error rate and be more powerful than existing methods. Simulation studies further confirm the theoretical analysis conclusions.

Suggested Citation

  • Zhao, Haibing, 2014. "Adaptive FWER control procedure for grouped hypotheses," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 63-70.
  • Handle: RePEc:eee:stapro:v:95:y:2014:i:c:p:63-70
    DOI: 10.1016/j.spl.2014.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214002909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, T. Tony & Sun, Wenguang, 2009. "Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1467-1481.
    2. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    3. Wenge Guo, 2009. "A note on adaptive Bonferroni and Holm procedures under dependence," Biometrika, Biometrika Trust, vol. 96(4), pages 1012-1018.
    4. Christopher R. Genovese & Kathryn Roeder & Larry Wasserman, 2006. "False discovery control with p-value weighting," Biometrika, Biometrika Trust, vol. 93(3), pages 509-524, September.
    5. Hu, James X. & Zhao, Hongyu & Zhou, Harrison H., 2010. "False Discovery Rate Control With Groups," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1215-1227.
    6. Helmut Finner & Veronika Gontscharuk, 2009. "Controlling the familywise error rate with plug‐in estimator for the proportion of true null hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1031-1048, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Wang, 2019. "Weighted multiple testing procedure for grouped hypotheses with k-FWER control," Computational Statistics, Springer, vol. 34(2), pages 885-909, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    2. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    3. T. Tony Cai & Wenguang Sun & Weinan Wang, 2019. "Covariate‐assisted ranking and screening for large‐scale two‐sample inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 187-234, April.
    4. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    5. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    6. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    7. Otília Menyhart & Boglárka Weltz & Balázs Győrffy, 2021. "MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-12, June.
    8. Vincent, Kendro & Hsu, Yu-Chin & Lin, Hsiou-Wei, 2021. "Investment styles and the multiple testing of cross-sectional stock return predictability," Journal of Financial Markets, Elsevier, vol. 56(C).
    9. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    10. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    11. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    12. Andrew Y. Chen, 2022. "Most claimed statistical findings in cross-sectional return predictability are likely true," Papers 2206.15365, arXiv.org, revised Mar 2024.
    13. Wenguang Sun & T. Tony Cai, 2009. "Large‐scale multiple testing under dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 393-424, April.
    14. Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.
    15. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    16. Ang Li & Rina Foygel Barber, 2017. "Accumulation Tests for FDR Control in Ordered Hypothesis Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 837-849, April.
    17. Simina M. Boca & Héctor Céorrada Bravo & Brian Caffo & Jeffrey T. Leek & Giovanni Parmigiani, 2013. "A Decision-Theory Approach to Interpretable Set Analysis for High-Dimensional Data," Biometrics, The International Biometric Society, vol. 69(3), pages 614-623, September.
    18. Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.
    19. Jiaying Gu & Roger Koenker, 2016. "On a Problem of Robbins," International Statistical Review, International Statistical Institute, vol. 84(2), pages 224-244, August.
    20. Anh-Tuan Hoang & Thorsten Dickhaus, 2022. "On the usage of randomized p-values in the Schweder–Spjøtvoll estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 289-319, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:95:y:2014:i:c:p:63-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.