IDEAS home Printed from
   My bibliography  Save this article

Asymptotic behavior of random time absolute ruin probability with D∩L tailed and conditionally independent claim sizes


  • Bai, Xiaodong
  • Song, Lixin


Consider the probability of random time absolute ruin in the renewal risk model with constant premium rate and constant force of interest. We assume that claim sizes Xi,i=1,2,…, are conditionally independent on some sigma algebra and that the common distribution belongs to class D∩L. We obtain the asymptotic formula for the subclass of subexponential distributions.

Suggested Citation

  • Bai, Xiaodong & Song, Lixin, 2012. "Asymptotic behavior of random time absolute ruin probability with D∩L tailed and conditionally independent claim sizes," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1718-1726.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:9:p:1718-1726
    DOI: 10.1016/j.spl.2012.05.010

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Yu, Wenguang, 2013. "Some results on absolute ruin in the perturbed insurance risk model with investment and debit interests," Economic Modelling, Elsevier, vol. 31(C), pages 625-634.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:9:p:1718-1726. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.