IDEAS home Printed from
   My bibliography  Save this article

Characterization of hazard function factorization by Fisher information in minima and upper record values


  • Hofmann, Glenn
  • Balakrishnan, N.
  • Ahmadi, Jafar


The hazard function is an important characteristic for the analysis of reliability data. It is therefore of interest to see under what conditions it can be expressed as the product of a function of the variable and a function of the parameter. We show that such a factorization can be characterized by the property of Fisher information in minima and upper record values. We present similar results for the reversed hazard rate by the property of Fisher information in maxima and lower record values. These properties imply the characterization of two classes of exponential families.

Suggested Citation

  • Hofmann, Glenn & Balakrishnan, N. & Ahmadi, Jafar, 2005. "Characterization of hazard function factorization by Fisher information in minima and upper record values," Statistics & Probability Letters, Elsevier, vol. 72(1), pages 51-57, April.
  • Handle: RePEc:eee:stapro:v:72:y:2005:i:1:p:51-57

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zheng, Gang & Gastwirth, Joseph L., 2001. "On the Fisher information in randomly censored data," Statistics & Probability Letters, Elsevier, vol. 52(4), pages 421-426, May.
    2. Zheng, Gang, 2001. "A characterization of the factorization of hazard function by the Fisher information under Type II censoring with application to the Weibull family," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 249-253, April.
    3. Z. Abo-Eleneen & H. Nagaraja, 2002. "Fisher Information in an Order Statistic and its Concomitant," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 667-680, September.
    4. Glenn Hofmann, 2004. "Comparing the Fisher information in record data and random observations," Statistical Papers, Springer, vol. 45(4), pages 517-528, October.
    5. Gertsbakh, Ilya & Kagan, Abram, 1999. "Characterization of the Weibull distribution by properties of the Fisher information under type-I censoring," Statistics & Probability Letters, Elsevier, vol. 42(1), pages 99-105, March.
    6. Stepanov, A. V. & Balakrishnan, N. & Hofmann, Glenn, 2003. "Exact distribution and Fisher information of weak record values," Statistics & Probability Letters, Elsevier, vol. 64(1), pages 69-81, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fashandi, M. & Ahmadi, Jafar, 2012. "Characterizations of symmetric distributions based on Rényi entropy," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 798-804.
    2. Balakrishnan, N. & Burkschat, Marco & Cramer, Erhard & Hofmann, Glenn, 2008. "Fisher information based progressive censoring plans," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 366-380, December.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:72:y:2005:i:1:p:51-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.