IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v220y2025ics0167715224003146.html
   My bibliography  Save this article

A simple consensus model for an increasing population of agents with i.i.d incoming opinions

Author

Listed:
  • Markou, Ioannis

Abstract

In this short note we study what happens in a symmetric opinion model when we send the total interacting population N(t) to infinity as t→∞. We assume that new population enters the system with opinions that are i.i.d random vectors with finite mean and variance. We give sharp conditions on the rate of population growth that is required for convergence to a global consensus in opinions. More particularly, we show that if the total population increases at a rate N(t)∼etα, then α<1 is necessary and sufficient condition for convergence to the mean of incoming opinions, and the convergence is achieved at an algebraic rate.

Suggested Citation

  • Markou, Ioannis, 2025. "A simple consensus model for an increasing population of agents with i.i.d incoming opinions," Statistics & Probability Letters, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:stapro:v:220:y:2025:i:c:s0167715224003146
    DOI: 10.1016/j.spl.2024.110345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224003146
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    2. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    3. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    4. Thomas Moore & Patrick Finley & Nancy Brodsky & Theresa Brown & Benjamin Apelberg & Bridget Ambrose & Robert Glass, 2015. "Modeling Education and Advertising with Opinion Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-7.
    5. George Butler & Juliette Rouchier & Gabriella Pigozzi, 2021. "Corrigendum to “Mixing Dyadic and Deliberative Opinion Dynamics in an Agent-Based Model of Group Decision-Makingâ€," Complexity, Hindawi, vol. 2021, pages 1-1, February.
    6. Leonie Geyer & Patrick Mellacher, 2024. "Simulating Party Competition in Dynamic Voter Distributions," Graz Economics Papers 2024-19, University of Graz, Department of Economics.
    7. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    8. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    9. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Saggau, Volker, 2012. "Viele Köche Verderben Den Brei – Agentenbasierte Simulationen Zum Föderalismusdurcheinander Während Der Ehec-Krise," 52nd Annual Conference, Stuttgart, Germany, September 26-28, 2012 133052, German Association of Agricultural Economists (GEWISOLA).
    11. Hannah Übler & Stephan Hartmann, 2016. "Simulating Trends in Artificial Influence Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-2.
    12. Goehle, Geoff & Griffin, Christopher, 2024. "Dynamics of an information theoretic analog of two masses on a spring," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    13. Si, Xia-Meng & Wang, Wen-Dong & Ma, Yan, 2016. "Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 549-559.
    14. Wander Jager & Frédéric Amblard, 2005. "Uniformity, Bipolarization and Pluriformity Captured as Generic Stylized Behavior with an Agent-Based Simulation Model of Attitude Change," Computational and Mathematical Organization Theory, Springer, vol. 10(4), pages 295-303, January.
    15. Grigis, Federico & Ortobelli Lozza, Sergio & Vitali, Sebastiano, 2025. "Computing agents' reputation within a network," Games and Economic Behavior, Elsevier, vol. 150(C), pages 312-333.
    16. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    17. repec:plo:pone00:0126090 is not listed on IDEAS
    18. Gabbay, Michael, 2007. "The effects of nonlinear interactions and network structure in small group opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(1), pages 118-126.
    19. Deffuant, Guillaume & Roubin, Thibaut, 2023. "Emergence of group hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    20. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    21. Deffuant, Guillaume & Roubin, Thibaut, 2022. "Do interactions among unequal agents undermine those of low status?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:220:y:2025:i:c:s0167715224003146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.