IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v217y2025ics0167715224002621.html
   My bibliography  Save this article

A one-way MANOVA test for high-dimensional data using clustering subspaces

Author

Listed:
  • Lu, Minyuan
  • Zhou, Bu

Abstract

This study focuses on the high-dimensional one-way analysis of variance problem, specifically, testing whether multiple population mean vectors are equal in the context of high-dimensional data. To solve the problem that classical multivariate analysis of variance (MANOVA) test statistics are undefined when the dimensionality surpasses the sample size, we propose a random permutation test using low-dimensional subspaces obtained by clustering of variables. The test statistics are derived from a one-way MANOVA decomposition for clustered variables and this approach utilizes the correlation information among variables to ensure high testing power. Simulation studies indicate that the proposed test performs well with high-dimensional data.

Suggested Citation

  • Lu, Minyuan & Zhou, Bu, 2025. "A one-way MANOVA test for high-dimensional data using clustering subspaces," Statistics & Probability Letters, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:stapro:v:217:y:2025:i:c:s0167715224002621
    DOI: 10.1016/j.spl.2024.110293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224002621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    2. Shen, Yanfeng & Lin, Zhengyan & Zhu, Jun, 2011. "Shrinkage-based regularization tests for high-dimensional data with application to gene set analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2221-2233, July.
    3. Schott, James R., 2007. "Some high-dimensional tests for a one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 98(9), pages 1825-1839, October.
    4. Srivastava, Muni S. & Fujikoshi, Yasunori, 2006. "Multivariate analysis of variance with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 1927-1940, October.
    5. Shen, Yanfeng & Lin, Zhengyan, 2015. "An adaptive test for the mean vector in large-p-small-n problems," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 25-38.
    6. Zhang, Jie & Pan, Meng, 2016. "A high-dimension two-sample test for the mean using cluster subspaces," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 87-97.
    7. Srivastava, Muni S. & Kubokawa, Tatsuya, 2013. "Tests for multivariate analysis of variance in high dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 204-216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-Ting Zhang & Bu Zhou & Jia Guo, 2022. "Testing high-dimensional mean vector with applications," Statistical Papers, Springer, vol. 63(4), pages 1105-1137, August.
    2. Zhang, Jin-Ting & Guo, Jia & Zhou, Bu, 2017. "Linear hypothesis testing in high-dimensional one-way MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 200-216.
    3. Zhang, Jin-Ting & Zhou, Bu & Guo, Jia, 2022. "Linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA: A normal reference L2-norm based test," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    4. Zhang, Qiuyan & Wang, Chen & Zhang, Baoxue & Yang, Hu, 2024. "An RIHT statistic for testing the equality of several high-dimensional mean vectors under homoskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    5. Tianming Zhu & Jin-Ting Zhang, 2022. "Linear hypothesis testing in high-dimensional one-way MANOVA: a new normal reference approach," Computational Statistics, Springer, vol. 37(1), pages 1-27, March.
    6. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    7. Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Watanabe, Hiroki & Hyodo, Masashi & Nakagawa, Shigekazu, 2020. "Two-way MANOVA with unequal cell sizes and unequal cell covariance matrices in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    9. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
    10. Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
    11. Davy Paindaveine & Thomas Verdebout, 2013. "Universal Asymptotics for High-Dimensional Sign Tests," Working Papers ECARES ECARES 2013-40, ULB -- Universite Libre de Bruxelles.
    12. Huiqin Li & Jiang Hu & Zhidong Bai & Yanqing Yin & Kexin Zou, 2017. "Test on the linear combinations of mean vectors in high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 188-208, March.
    13. Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    14. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    15. Srivastava, Muni S. & Kubokawa, Tatsuya, 2013. "Tests for multivariate analysis of variance in high dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 204-216.
    16. Muni S. Srivastava & Tatsuya Kubokawa, 2011. "Tests for Multivariate Analysis of Variance in High Dimension Under Non-Normality," CIRJE F-Series CIRJE-F-831, CIRJE, Faculty of Economics, University of Tokyo.
    17. Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
    18. Chakraborty, Nilanjan & Sakhanenko, Lyudmila, 2023. "Novel multiplier bootstrap tests for high-dimensional data with applications to MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    19. Zhao, Junguang & Xu, Xingzhong, 2016. "A generalized likelihood ratio test for normal mean when p is greater than n," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 91-104.
    20. Harrar, Solomon W. & Kong, Xiaoli, 2016. "High-dimensional multivariate repeated measures analysis with unequal covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:217:y:2025:i:c:s0167715224002621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.