IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v209y2024ics0167715224000579.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Sparse basis covariance matrix estimation for high dimensional compositional data via hard thresholding

Author

Listed:
  • Li, Huimin
  • Wang, Jinru

Abstract

Motivated by the high-dimensional compositional data appearing in many fields, this paper addresses the problem of large covariance estimation for compositional data. Firstly, we introduce the hard thresholding estimator to approximate the sparse basis covariance matrix which is relevant with compositional data. Then the upper error bounds are measured by the general matrix lv,w-norm and the general entrywise Lv,w-norm respectively with v,w∈[1,∞] in terms of probability. Finally, numerical simulations and real datasets application demonstrate that our estimator is close to the oracle estimator and outperforms the COAT estimator proposed by Cao et al. (2019).

Suggested Citation

  • Li, Huimin & Wang, Jinru, 2024. "Sparse basis covariance matrix estimation for high dimensional compositional data via hard thresholding," Statistics & Probability Letters, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:stapro:v:209:y:2024:i:c:s0167715224000579
    DOI: 10.1016/j.spl.2024.110088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224000579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qihu & Park, Cheolwoo & Chung, Jongik, 2021. "Minimax estimation of covariance and precision matrices for high-dimensional time series with long-memory," Statistics & Probability Letters, Elsevier, vol. 177(C).
    2. Adam J. Rothman, 2012. "Positive definite estimators of large covariance matrices," Biometrika, Biometrika Trust, vol. 99(3), pages 733-740.
    3. Peter J. Turnbaugh & Micah Hamady & Tanya Yatsunenko & Brandi L. Cantarel & Alexis Duncan & Ruth E. Ley & Mitchell L. Sogin & William J. Jones & Bruce A. Roe & Jason P. Affourtit & Michael Egholm & Be, 2009. "A core gut microbiome in obese and lean twins," Nature, Nature, vol. 457(7228), pages 480-484, January.
    4. Yuanpei Cao & Wei Lin & Hongzhe Li, 2019. "Large Covariance Estimation for Compositional Data Via Composition-Adjusted Thresholding," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 759-772, April.
    5. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    6. Marco Avella-Medina & Heather S Battey & Jianqing Fan & Quefeng Li, 2018. "Robust estimation of high-dimensional covariance and precision matrices," Biometrika, Biometrika Trust, vol. 105(2), pages 271-284.
    7. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Kong, Lingchen & Wang, Liqun, 2024. "Estimation of sparse covariance matrix via non-convex regularization," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Huang Lin & Merete Eggesbø & Shyamal Das Peddada, 2022. "Linear and nonlinear correlation estimators unveil undescribed taxa interactions in microbiome data," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Xin Wang & Lingchen Kong & Liqun Wang & Zhaoqilin Yang, 2023. "High-Dimensional Covariance Estimation via Constrained L q -Type Regularization," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    4. Liang, Wanfeng & Wu, Yue & Ma, Xiaoyan, 2022. "Robust sparse precision matrix estimation for high-dimensional compositional data," Statistics & Probability Letters, Elsevier, vol. 184(C).
    5. Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    6. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    7. Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
    8. Arnab Chakrabarti & Rituparna Sen, 2018. "Some Statistical Problems with High Dimensional Financial data," Papers 1808.02953, arXiv.org.
    9. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    10. Cui, Ying & Leng, Chenlei & Sun, Defeng, 2016. "Sparse estimation of high-dimensional correlation matrices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 390-403.
    11. Alexander Giessing & Jianqing Fan, 2020. "Bootstrapping $\ell_p$-Statistics in High Dimensions," Papers 2006.13099, arXiv.org, revised Aug 2020.
    12. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    13. Binyan Jiang, 2015. "An empirical estimator for the sparsity of a large covariance matrix under multivariate normal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 211-227, April.
    14. Ines Wilms & Jacob Bien, 2021. "Tree-based Node Aggregation in Sparse Graphical Models," Papers 2101.12503, arXiv.org.
    15. Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
    16. Shaoxin Wang & Hu Yang & Chaoli Yao, 2019. "On the penalized maximum likelihood estimation of high-dimensional approximate factor model," Computational Statistics, Springer, vol. 34(2), pages 819-846, June.
    17. Choi, Young-Geun & Lim, Johan & Roy, Anindya & Park, Junyong, 2019. "Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 234-249.
    18. Denis Belomestny & Mathias Trabs & Alexandre Tsybakov, 2017. "Sparse covariance matrix estimation in high-dimensional deconvolution," Working Papers 2017-25, Center for Research in Economics and Statistics.
    19. Seonghun Cho & Shota Katayama & Johan Lim & Young-Geun Choi, 2021. "Positive-definite modification of a covariance matrix by minimizing the matrix $$\ell_{\infty}$$ ℓ ∞ norm with applications to portfolio optimization," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 601-627, December.
    20. McGillivray, Annaliza & Khalili, Abbas & Stephens, David A., 2020. "Estimating sparse networks with hubs," Journal of Multivariate Analysis, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:209:y:2024:i:c:s0167715224000579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.