IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v192y2023ics0167715222002243.html
   My bibliography  Save this article

Cramér moderate deviations for a supercritical Galton–Watson process

Author

Listed:
  • Doukhan, Paul
  • Fan, Xiequan
  • Gao, Zhi-Qiang

Abstract

Let (Zn)n≥0 be a supercritical Galton–Watson process. The Lotka–Nagaev estimator Zn+1/Zn is a common estimator for the offspring mean. In this paper, we establish some Cramér moderate deviation results for the Lotka–Nagaev estimator via a martingale method. Applications to construction of confidence intervals are also given.

Suggested Citation

  • Doukhan, Paul & Fan, Xiequan & Gao, Zhi-Qiang, 2023. "Cramér moderate deviations for a supercritical Galton–Watson process," Statistics & Probability Letters, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:stapro:v:192:y:2023:i:c:s0167715222002243
    DOI: 10.1016/j.spl.2022.109711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222002243
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liuyan Li & Junping Li, 2021. "Large Deviation Rates for Supercritical Branching Processes with Immigration," Journal of Theoretical Probability, Springer, vol. 34(1), pages 162-172, March.
    2. Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
    3. Emmanuel Rio, 2009. "Moment Inequalities for Sums of Dependent Random Variables under Projective Conditions," Journal of Theoretical Probability, Springer, vol. 22(1), pages 146-163, March.
    4. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
    5. Fan, Xiequan & Grama, Ion & Liu, Quansheng & Shao, Qi-Man, 2020. "Self-normalized Cramér type moderate deviations for stationary sequences and applications," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5124-5148.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yuejiao & Liu, Zaiming & Li, Yingqiu & Liu, Quansheng, 2017. "On the concept of subcriticality and criticality and a ratio theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 97-103.
    2. Gao, Zhi-Qiang, 2021. "Exact convergence rate in the central limit theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 178(C).
    3. Fan, Xiequan & Alquier, Pierre & Doukhan, Paul, 2022. "Deviation inequalities for stochastic approximation by averaging," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 452-485.
    4. Liuyan Li & Junping Li, 2023. "The Local Limit Theorem for Supercritical Branching Processes with Immigration," Journal of Theoretical Probability, Springer, vol. 36(1), pages 331-347, March.
    5. Victor Chernozhukov & Ivan Fernandez-Val & Chen Huang & Weining Wang, 2024. "Arellano-bond lasso estimator for dynamic linear panel models," CeMMAP working papers 09/24, Institute for Fiscal Studies.
    6. Qizhao Chen & Morgane Austern & Vasilis Syrgkanis, 2023. "Inference on Optimal Dynamic Policies via Softmax Approximation," Papers 2303.04416, arXiv.org, revised Dec 2023.
    7. Likai Chen & Georg Keilbar & Liangjun Su & Weining Wang, 2023. "Inference on many jumps in nonparametric panel regression models," Papers 2312.01162, arXiv.org, revised Aug 2024.
    8. Struleva, M.A. & Prokopenko, E.I., 2022. "Integro-local limit theorems for supercritical branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 181(C).
    9. Xu, Haotian & Wang, Daren & Zhao, Zifeng & Yu, Yi, 2022. "Change point inference in high-dimensional regression models under temporal dependence," LIDAM Discussion Papers ISBA 2022027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Jiaqi Li & Likai Chen & Kun Ho Kim & Tianwei Zhou, 2022. "Simultaneous Inference of a Partially Linear Model in Time Series," Papers 2212.10359, arXiv.org, revised Sep 2023.
    11. Giraudo, Davide, 2024. "Deviation inequality for Banach-valued orthomartingales," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    12. Qizhao Chen & Vasilis Syrgkanis & Morgane Austern, 2022. "Debiased Machine Learning without Sample-Splitting for Stable Estimators," Papers 2206.01825, arXiv.org, revised Nov 2022.
    13. Gao, Zhenlong & Zhang, Yanhua, 2015. "Large and moderate deviations for a class of renewal random indexed branching process," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 1-5.
    14. Ye, Yinna, 2024. "From law of the iterated logarithm to Zolotarev distance for supercritical branching processes in random environment," Statistics & Probability Letters, Elsevier, vol. 214(C).
    15. Li, Yingqiu & Liu, Quansheng & Peng, Xuelian, 2019. "Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 57-65.
    16. Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
    17. Cui, Jiazhen & Liu, Qiaojing, 2023. "Cramér-type moderate deviations for the log-likelihood ratio of inhomogeneous Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 192(C).
    18. Peter Eichelsbacher & Matthias Löwe, 2019. "Lindeberg’s Method for Moderate Deviations and Random Summation," Journal of Theoretical Probability, Springer, vol. 32(2), pages 872-897, June.
    19. Gao, Zhenlong & Wang, Weigang, 2015. "Large deviations for a Poisson random indexed branching process," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 143-148.
    20. Yuliana Linke & Igor Borisov & Pavel Ruzankin & Vladimir Kutsenko & Elena Yarovaya & Svetlana Shalnova, 2024. "Multivariate Universal Local Linear Kernel Estimators in Nonparametric Regression: Uniform Consistency," Mathematics, MDPI, vol. 12(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:192:y:2023:i:c:s0167715222002243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.