From law of the iterated logarithm to Zolotarev distance for supercritical branching processes in random environment
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2024.110194
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shao, Qi-Man, 1993. "Almost sure invariance principles for mixing sequences of random variables," Stochastic Processes and their Applications, Elsevier, vol. 48(2), pages 319-334, November.
- Tanny, David, 1988. "A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means," Stochastic Processes and their Applications, Elsevier, vol. 28(1), pages 123-139, April.
- Shulei Wang & T. Tony Cai & Hongzhe Li, 2021. "Optimal Estimation of Wasserstein Distance on a Tree With an Application to Microbiome Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1237-1253, July.
- Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
- Grama, Ion & Lauvergnat, Ronan & Le Page, Émile, 2019. "The survival probability of critical and subcritical branching processes in finite state space Markovian environment," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2485-2527.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
- Gao, Zhi-Qiang, 2021. "Exact convergence rate in the central limit theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 178(C).
- Li, Yingqiu & Zhang, Xin & Lu, Zhan & Xiao, Sheng, 2025. "Exact convergence rate of the central limit theorem and polynomial convergence rate for branching processes in a random environment," Statistics & Probability Letters, Elsevier, vol. 216(C).
- Christophe Cuny & Florence Merlevède, 2015. "Strong Invariance Principles with Rate for “Reverse” Martingale Differences and Applications," Journal of Theoretical Probability, Springer, vol. 28(1), pages 137-183, March.
- Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.
- J. Dedecker & C. Prieur, 2004. "Coupling for τ-Dependent Sequences and Applications," Journal of Theoretical Probability, Springer, vol. 17(4), pages 861-885, October.
- Struleva, M.A. & Prokopenko, E.I., 2022. "Integro-local limit theorems for supercritical branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 181(C).
- Bashtova, Elena & Shashkin, Alexey, 2022. "Strong Gaussian approximation for cumulative processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 1-18.
- Gao, Zhiqiang & Liu, Quansheng, 2016. "Exact convergence rates in central limit theorems for a branching random walk with a random environment in time," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2634-2664.
- Raluca Balan & Kulik, 2005. "Self-Normalized Weak Invariance Principle for Mixing Sequences," RePAd Working Paper Series lrsp-TRS417, Département des sciences administratives, UQO.
- Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
- Wang, Yuejiao & Liu, Zaiming & Li, Yingqiu & Liu, Quansheng, 2017. "On the concept of subcriticality and criticality and a ratio theorem for a branching process in a random environment," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 97-103.
- Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.
- Hafouta, Yeor, 2023. "An almost sure invariance principle for some classes of non-stationary mixing sequences," Statistics & Probability Letters, Elsevier, vol. 193(C).
- Gao, Zhenlong & Zhang, Yanhua, 2015. "Large and moderate deviations for a class of renewal random indexed branching process," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 1-5.
- Doukhan, Paul & Fan, Xiequan & Gao, Zhi-Qiang, 2023. "Cramér moderate deviations for a supercritical Galton–Watson process," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Aue, Alexander & Horváth, Lajos, 2004. "Delay time in sequential detection of change," Statistics & Probability Letters, Elsevier, vol. 67(3), pages 221-231, April.
- Zhang, Li-Xin, 1996. "Complete convergence of moving average processes under dependence assumptions," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 165-170, October.
- Li, Yingqiu & Liu, Quansheng & Peng, Xuelian, 2019. "Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 57-65.
- Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
More about this item
Keywords
Branching processes in random environment; Law of the iterated logarithm; Law of large numbers; Convergence rates in central limit theorem; Zolotarev distance; Wasserstein distance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:214:y:2024:i:c:s0167715224001639. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.