Self-normalized Cramér type moderate deviations for stationary sequences and applications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2020.03.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gao, Fu-Qing, 1996. "Moderate deviations for martingales and mixing random processes," Stochastic Processes and their Applications, Elsevier, vol. 61(2), pages 263-275, February.
- Grama, Ion & Haeusler, Erich, 2000. "Large deviations for martingales via Cramér's method," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 279-293, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cui, Jiazhen & Liu, Qiaojing, 2023. "Cramér-type moderate deviations for the log-likelihood ratio of inhomogeneous Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Doukhan, Paul & Fan, Xiequan & Gao, Zhi-Qiang, 2023. "Cramér moderate deviations for a supercritical Galton–Watson process," Statistics & Probability Letters, Elsevier, vol. 192(C).
- Fan, Xiequan, 2024. "Sharp moderate and large deviations for sample quantiles," Statistics & Probability Letters, Elsevier, vol. 205(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiequan Fan & Ion Grama & Quansheng Liu, 2020. "Cramér Moderate Deviation Expansion for Martingales with One-Sided Sakhanenko’s Condition and Its Applications," Journal of Theoretical Probability, Springer, vol. 33(2), pages 749-787, June.
- Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
- Sason, Igal, 2013. "Tightened exponential bounds for discrete-time conditionally symmetric martingales with bounded jumps," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1928-1936.
- Benoist, Tristan & Fatras, Jan-Luka & Pellegrini, Clément, 2023. "Limit theorems for quantum trajectories," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 288-310.
- Kanaya, Shin & Otsu, Taisuke, 2012.
"Large deviations of realized volatility,"
Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 546-581.
- Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
- Zhu, Lingjiong, 2013. "Moderate deviations for Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 885-890.
- Xue, Xiaofeng, 2021. "Moderate deviations of density-dependent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 49-80.
- I. G. Grama & E. Haeusler, 2006. "An Asymptotic Expansion for Probabilities of Moderate Deviations for Multivariate Martingales," Journal of Theoretical Probability, Springer, vol. 19(1), pages 1-44, January.
- Fan, Xiequan & Grama, Ion & Liu, Quansheng, 2012. "Hoeffding’s inequality for supermartingales," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3545-3559.
- Fan, Xiequan, 2017. "Self-normalized deviation inequalities with application to t-statistic," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 158-164.
- Ulrich Horst & Jan Wezelburger, 2006. "Non-ergodic Behavior in a Financial Market with Interacting Investors," 2006 Meeting Papers 229, Society for Economic Dynamics.
- Fan, Xiequan & Ma, Xiaohui, 2020. "On the Wasserstein distance for a martingale central limit theorem," Statistics & Probability Letters, Elsevier, vol. 167(C).
- Chen, Lei & Gao, Fuqing, 2013. "Moderate deviation principle for Brownian motions on the unit sphere in Rd," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2486-2491.
- Dasgupta, Amites, 2024. "Azuma-Hoeffding bounds for a class of urn models," Statistics & Probability Letters, Elsevier, vol. 204(C).
More about this item
Keywords
Moderate deviations; Stationary processes; Cramér moderate deviations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:8:p:5124-5148. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.