IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v166y2020ics016771522030167x.html
   My bibliography  Save this article

Nonparametric regression estimate with Berkson Laplace measurement error

Author

Listed:
  • Shi, Jianhong
  • Bai, Xiuqin
  • Song, Weixing

Abstract

In this paper, a nonparametric estimator for the regression function is constructed when the covariates are contaminated with the multivariate Laplace measurement error. The proposed estimator is based upon a simple relationship between the regression function and the conditional expectation of the regression function given the proxy data, as well as the second derivative of this expectation. Large sample properties of the proposed estimator, including the consistency and asymptotic normality, are established. The theoretical optimal bandwidth based on asymptotic integrated mean squared error is derived, and a data-driven bandwidth selector is recommended. Finite sample performance of the proposed estimator is evaluated by a simulation study.

Suggested Citation

  • Shi, Jianhong & Bai, Xiuqin & Song, Weixing, 2020. "Nonparametric regression estimate with Berkson Laplace measurement error," Statistics & Probability Letters, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:stapro:v:166:y:2020:i:c:s016771522030167x
    DOI: 10.1016/j.spl.2020.108864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771522030167X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Meister, Alexander, 2010. "Nonparametric Berkson regression under normal measurement error and bounded design," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1179-1189, May.
    2. Lu, Zhan-Qian, 1996. "Multivariate Locally Weighted Polynomial Fitting and Partial Derivative Estimation," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 187-205, November.
    3. Magnus, J.R. & Neudecker, H., 1980. "The elimination matrix : Some lemmas and applications," Other publications TiSEM 0e3315d3-846c-4bc5-928e-f, Tilburg University, School of Economics and Management.
    4. Aurore Delaigle & Peter Hall & Peihua Qiu, 2006. "Nonparametric methods for solving the Berkson errors‐in‐variables problem," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 201-220, April.
    5. Jingping Gu & Qi Li & Jui-Chung Yang, 2015. "Multivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 979-1010, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katharina Proksch & Nicolai Bissantz & Hajo Holzmann, 2022. "Simultaneous inference for Berkson errors-in-variables regression under fixed design," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 773-800, August.
    2. Chan Shen, 2019. "Recursive Differencing for Estimating Semiparametric Models," Departmental Working Papers 201903, Rutgers University, Department of Economics.
    3. Aboubacar Amiri & Baba Thiam, 2018. "Regression estimation by local polynomial fitting for multivariate data streams," Statistical Papers, Springer, vol. 59(2), pages 813-843, June.
    4. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    5. St'ephane Bonhomme & Koen Jochmans & Martin Weidner, 2024. "A Neyman-Orthogonalization Approach to the Incidental Parameter Problem," Papers 2412.10304, arXiv.org, revised Jan 2025.
    6. D.A. Turkington, 1997. "Some results in matrix calculus and an example of their application to econometrics," Economics Discussion / Working Papers 97-07, The University of Western Australia, Department of Economics.
    7. Seok Young Hong & Oliver Linton & Hui Jun Zhang, 2014. "Multivariate Variance Ratio Statistics," Cambridge Working Papers in Economics 1459, Faculty of Economics, University of Cambridge.
    8. Shuangzhe Liu & Götz Trenkler & Tõnu Kollo & Dietrich Rosen & Oskar Maria Baksalary, 2024. "Professor Heinz Neudecker and matrix differential calculus," Statistical Papers, Springer, vol. 65(4), pages 2605-2639, June.
    9. Liu, Shuangzhe & Leiva, Víctor & Zhuang, Dan & Ma, Tiefeng & Figueroa-Zúñiga, Jorge I., 2022. "Matrix differential calculus with applications in the multivariate linear model and its diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Shriram Srinivasan & Nishant Panda, 2023. "What is the gradient of a scalar function of a symmetric matrix?," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(3), pages 907-919, September.
    11. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2018. "Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions," Journal of Econometrics, Elsevier, vol. 207(1), pages 71-91.
    12. Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Staudenmayer, John & Ruppert, David & Buonaccorsi, John P., 2008. "Density Estimation in the Presence of Heteroscedastic Measurement Error," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 726-736, June.
    14. Savas Papadopoulos, 2010. "Theory and methodology for dynamic panel data: tested by simulations based on financial data," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 1(3/4), pages 239-253.
    15. Hamid Mraoui & Ahmed El-Alaoui & Souad Bechrouri & Nezha Mohaoui & Abdelilah Monir, 2025. "Two-stage regression spline modeling based on local polynomial kernel regression," Computational Statistics, Springer, vol. 40(1), pages 383-403, January.
    16. Attfield, C. L. F., 1995. "A Bartlett adjustment to the likelihood ratio test for a system of equations," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 207-223.
    17. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    18. Seok Young Hong & Oliver Linton & Hui Jun Zhang, 2015. "An investigation into multivariate variance ratio statistics and their application to stock market predictability," CeMMAP working papers 13/15, Institute for Fiscal Studies.
    19. Fruth, J. & Roustant, O. & Kuhnt, S., 2019. "Support indices: Measuring the effect of input variables over their supports," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 17-27.
    20. Eduardo Abi Jaber & Bruno Bouchard & Camille Illand & Eduardo Jaber, 2018. "Stochastic invariance of closed sets with non-Lipschitz coefficients," Working Papers hal-01349639, HAL.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:166:y:2020:i:c:s016771522030167x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.