IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v149y2019icp80-85.html
   My bibliography  Save this article

Moment-type estimation from grouped samples

Author

Listed:
  • Nowak, Piotr Bolesław

Abstract

The M-estimators for distribution parameters under grouped data are defined. These estimators are compared in terms of asymptotic variance to MLE’s. We show that these estimators are the same as the MLE’s in the case of exponential families. Moreover, the obtained results are illustrated by examples jointly with simulation study.

Suggested Citation

  • Nowak, Piotr Bolesław, 2019. "Moment-type estimation from grouped samples," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 80-85.
  • Handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:80-85
    DOI: 10.1016/j.spl.2019.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715219300161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2019.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meintanis, Simos G. & Ushakov, Nikolai G., 2016. "Nonparametric probability weighted empirical characteristic function and applications," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 52-61.
    2. Jun Yu, 2004. "Empirical Characteristic Function Estimation and Its Applications," Econometric Reviews, Taylor & Francis Journals, vol. 23(2), pages 93-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Kelley & M. D. R. Evans & Jonathan Kelley, 2023. "Happily Distant or Bitter Medicine? The Impact of Social Distancing Preferences, Behavior, and Emotional Costs on Subjective Wellbeing During the Epidemic," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 18(1), pages 115-162, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    2. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    3. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    4. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    5. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
    7. Annika Krutto, 2016. "Parameter Estimation in Stable Law," Risks, MDPI, vol. 4(4), pages 1-15, November.
    8. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401, July.
    9. Michael Rockinger & Maria Semenova, 2005. "Estimation of Jump-Diffusion Process vis Empirical Characteristic Function," FAME Research Paper Series rp150, International Center for Financial Asset Management and Engineering.
    10. Sangyeol Lee & Simos G. Meintanis & Minyoung Jo, 2019. "Inferential procedures based on the integrated empirical characteristic function," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(3), pages 357-386, September.
    11. Kotchoni, Rachidi, 2014. "The indirect continuous-GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 464-488.
    12. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    13. Mohamed Doukali & Xiaojun Song & Abderrahim Taamouti, 2024. "Value‐at‐Risk under Measurement Error," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 690-713, June.
    14. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    15. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    16. Carrasco, Marine & Kotchoni, Rachidi, 2017. "Efficient Estimation Using The Characteristic Function," Econometric Theory, Cambridge University Press, vol. 33(2), pages 479-526, April.
    17. Maria P. Braun & Simos G. Meintanis & Viatcheslav B. Melas, 2008. "Optimal Design Approach to GMM Estimation of Parameters Based on Empirical Transforms," International Statistical Review, International Statistical Institute, vol. 76(3), pages 387-400, December.
    18. Simos G. Meintanis & James Allison & Leonard Santana, 2016. "Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function," Statistical Papers, Springer, vol. 57(4), pages 957-976, December.
    19. Konrad Gajewski & Sebastian Ferrando & Pablo Olivares, 2020. "Pricing Energy Contracts under Regime Switching Time-Changed models," Papers 2005.14361, arXiv.org.
    20. Vladica S. Stojanović & Hassan S. Bakouch & Eugen Ljajko & Najla Qarmalah, 2023. "Zero-and-One Integer-Valued AR(1) Time Series with Power Series Innovations and Probability Generating Function Estimation Approach," Mathematics, MDPI, vol. 11(8), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:149:y:2019:i:c:p:80-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.