IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v186y2025ics0304414925000808.html

Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations

Author

Listed:
  • Kirchner, Kristin
  • Willems, Joshua

Abstract

We define a number of higher-order Markov properties for stochastic processes (X(t))t∈T, indexed by an interval T⊆R and taking values in a real and separable Hilbert space U. We furthermore investigate the relations between them. In particular, for solutions to the stochastic evolution equation LX=Ẇ, where L is a linear operator acting on functions mapping from T to U and (Ẇ(t))t∈T is the formal derivative of a U-valued cylindrical Wiener process, we prove necessary and sufficient conditions for the weakest Markov property via locality of the precision operator L∗L.

Suggested Citation

  • Kirchner, Kristin & Willems, Joshua, 2025. "Multiple and weak Markov properties in Hilbert spaces with applications to fractional stochastic evolution equations," Stochastic Processes and their Applications, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:spapps:v:186:y:2025:i:c:s0304414925000808
    DOI: 10.1016/j.spa.2025.104639
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Amanda F. Mejia & Yu (Ryan) Yue & David Bolin & Finn Lindgren & Martin A. Lindquist, 2020. "A Bayesian General Linear Modeling Approach to Cortical Surface fMRI Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 501-520, April.
    2. Stacey E. Alexeeff & Doug Nychka & Stephan R. Sain & Claudia Tebaldi, 2018. "Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments," Climatic Change, Springer, vol. 146(3), pages 319-333, February.
    3. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Niekerk, Janet & Krainski, Elias & Rustand, Denis & Rue, Håvard, 2023. "A new avenue for Bayesian inference with INLA," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    2. Ashton Wiens & Douglas Nychka & William Kleiber, 2020. "Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    3. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    4. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    5. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    6. Stefano Castruccio & Joseph Guinness, 2017. "An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 329-344, February.
    7. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    8. William Kleiber & Stephan Sain & Luke Madaus & Patrick Harr, 2023. "Stochastic tropical cyclone precipitation field generation," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    9. Korte-Stapff, Moritz & Karvonen, Toni & Moulines, Éric, 2025. "Smoothness estimation for Whittle–Matérn processes on closed Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 189(C).
    10. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    11. Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
    12. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    13. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    14. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    15. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    16. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    17. Coll, M. & Pennino, M. Grazia & Steenbeek, J. & Sole, J. & Bellido, J.M., 2019. "Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches," Ecological Modelling, Elsevier, vol. 405(C), pages 86-101.
    18. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    19. Ruiman Zhong & Paula Moraga, 2024. "Bayesian Hierarchical Models for the Combination of Spatially Misaligned Data: A Comparison of Melding and Downscaler Approaches Using INLA and SPDE," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 110-129, March.
    20. Daniela Silva & Raquel Menezes & Ana Moreno & Ana Teles-Machado & Susana Garrido, 2024. "Environmental Effects on the Spatiotemporal Variability of Sardine Distribution Along the Portuguese Continental Coast," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 553-575, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:186:y:2025:i:c:s0304414925000808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.