IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v185y2025ics0304414925000584.html
   My bibliography  Save this article

Fluctuations of Omega-killed level-dependent spectrally negative Lévy processes

Author

Listed:
  • Palmowski, Zbigniew
  • Şimşek, Meral
  • Papaioannou, Apostolos D.

Abstract

In this paper, we solve exit problems for a level-dependent Lévy process which is exponentially killed with a killing intensity that depends on the present state of the process. Moreover, we analyse the respective resolvents. All identities are given in terms of new generalisations of scale functions (counterparts of the scale function from the theory of Lévy processes), which are solutions of Volterra integral equations. Furthermore, we obtain similar results for the reflected level-dependent Lévy processes. The existence of the solution of the stochastic differential equation for reflected level-dependent Lévy processes is also discussed. Finally, to illustrate our result, the probability of bankruptcy is obtained for an insurance risk process.

Suggested Citation

  • Palmowski, Zbigniew & Şimşek, Meral & Papaioannou, Apostolos D., 2025. "Fluctuations of Omega-killed level-dependent spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:spapps:v:185:y:2025:i:c:s0304414925000584
    DOI: 10.1016/j.spa.2025.104617
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414925000584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2025.104617?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Czarna, Irmina & Pérez, José-Luis & Rolski, Tomasz & Yamazaki, Kazutoshi, 2019. "Fluctuation theory for level-dependent Lévy risk processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5406-5449.
    2. Pérez, José-Luis & Yamazaki, Kazutoshi, 2017. "Refraction–Reflection Strategies In The Dual Model," ASTIN Bulletin, Cambridge University Press, vol. 47(1), pages 199-238, January.
    3. Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "On the refracted–reflected spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 306-331.
    4. Li, Bo & Palmowski, Zbigniew, 2018. "Fluctuations of Omega-killed spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3273-3299.
    5. M. R. Pistorius, 2004. "On Exit and Ergodicity of the Spectrally One-Sided Lévy Process Reflected at Its Infimum," Journal of Theoretical Probability, Springer, vol. 17(1), pages 183-220, January.
    6. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    7. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    8. Hansjoerg Albrecher & Jevgenijs Ivanovs, 2013. "Power identities for L\'evy risk models under taxation and capital injections," Papers 1310.3052, arXiv.org, revised Mar 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    2. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    3. Noba, Kei, 2023. "On the optimality of the refraction–reflection strategies for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 174-217.
    4. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    5. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    6. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    7. Chunhao Cai & Bo Li, 2018. "Occupation Times of Intervals Until Last Passage Times for Spectrally Negative Lévy Processes," Journal of Theoretical Probability, Springer, vol. 31(4), pages 2194-2215, December.
    8. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    9. Landriault, David & Li, Bin & Lkabous, Mohamed Amine & Wang, Zijia, 2023. "Bridging the first and last passage times for Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 308-334.
    10. Czarna, Irmina & Renaud, Jean-François, 2016. "A note on Parisian ruin with an ultimate bankruptcy level for Lévy insurance risk processes," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 54-61.
    11. Kei Noba & Jos'e-Luis P'erez & Xiang Yu, 2019. "On the bail-out dividend problem for spectrally negative Markov additive models," Papers 1901.03021, arXiv.org, revised Feb 2020.
    12. Mohamed Amine Lkabous & Irmina Czarna & Jean-Franc{c}ois Renaud, 2016. "Parisian ruin for a refracted L\'evy process," Papers 1603.09324, arXiv.org, revised Mar 2017.
    13. Li, Bo & Palmowski, Zbigniew, 2018. "Fluctuations of Omega-killed spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(10), pages 3273-3299.
    14. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    15. Xuebing Kuang & Xiaowen Zhou, 2017. "n -Dimensional Laplace Transforms of Occupation Times for Spectrally Negative Lévy Processes," Risks, MDPI, vol. 5(1), pages 1-14, January.
    16. Li, Yingqiu & Zhou, Xiaowen & Zhu, Na, 2015. "Two-sided discounted potential measures for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 67-76.
    17. David Landriault & Bin Li & Mohamed Amine Lkabous, 2019. "On occupation times in the red of L\'evy risk models," Papers 1903.03721, arXiv.org, revised Jul 2019.
    18. José-Luis Pérez & Kazutoshi Yamazaki & Xiang Yu, 2018. "On the Bail-Out Optimal Dividend Problem," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 553-568, November.
    19. Landriault, David & Li, Bin & Wong, Jeff T.Y. & Xu, Di, 2018. "Poissonian potential measures for Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 152-166.
    20. Mohamed Amine Lkabous, 2019. "Poissonian occupation times of spectrally negative L\'evy processes with applications," Papers 1907.09990, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:185:y:2025:i:c:s0304414925000584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.