IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i11p4510-4555.html

Convergence, fluctuations and large deviations for finite state mean field games via the Master Equation

Author

Listed:
  • Cecchin, Alekos
  • Pelino, Guglielmo

Abstract

We show the convergence of finite state symmetric N-player differential games, where players control their transition rates from state to state, to a limiting dynamics given by a finite state Mean Field Game system made of two coupled forward–backward ODEs. We exploit the so-called Master Equation, which in this finite-dimensional framework is a first order PDE in the simplex of probability measures, obtaining the convergence of the feedback Nash equilibria, the value functions and the optimal trajectories. The convergence argument requires only the regularity of a solution to the Master Equation. Moreover, we employ the convergence results to prove a Central Limit Theorem and a Large Deviation Principle for the evolution of the N-player empirical measures. The well-posedness and regularity of solution to the Master Equation are also studied, under monotonicity assumptions.

Suggested Citation

  • Cecchin, Alekos & Pelino, Guglielmo, 2019. "Convergence, fluctuations and large deviations for finite state mean field games via the Master Equation," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4510-4555.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4510-4555
    DOI: 10.1016/j.spa.2018.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491830694X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. A. Bensoussan & K. C. J. Sung & S. C. P. Yam & S. P. Yung, 2016. "Linear-Quadratic Mean Field Games," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 496-529, May.
    2. Graham, Carl, 1992. "McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 69-82, February.
    3. Paolo Dai Pra & Wolfgang J. Runggaldier & Elena Sartori & Marco Tolotti, 2007. "Large portfolio losses: A dynamic contagion model," Papers 0704.1348, arXiv.org, revised Mar 2009.
    4. Adam Shwartz & Alan Weiss, 2005. "Large Deviations with Diminishing Rates," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 281-310, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jialiang Luo & Harry Zheng, 2023. "Deep Neural Network Solution for Finite State Mean Field Game with Error Estimation," Dynamic Games and Applications, Springer, vol. 13(3), pages 859-896, September.
    2. Talbi, Mehdi, 2024. "A finite-dimensional approximation for partial differential equations on Wasserstein space," Stochastic Processes and their Applications, Elsevier, vol. 177(C).
    3. Christoph Belak & Daniel Hoffmann & Frank T. Seifried, 2020. "Continuous-Time Mean Field Games with Finite StateSpace and Common Noise," Working Paper Series 2020-05, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    4. René Carmona & Peiqi Wang, 2021. "A Probabilistic Approach to Extended Finite State Mean Field Games," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 471-502, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justin Sirignano & Kay Giesecke, 2019. "Risk Analysis for Large Pools of Loans," Management Science, INFORMS, vol. 65(1), pages 107-121, January.
    2. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    3. Silvia Crafa, 2021. "From agent-based modeling to actor-based reactive systems in the analysis of financial networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 649-673, July.
    4. Bayraktar, Erhan & Wu, Ruoyu, 2021. "Mean field interaction on random graphs with dynamically changing multi-color edges," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 197-244.
    5. Yongxin Chen & Tryphon T. Georgiou & Michele Pavon, 2018. "Steering the Distribution of Agents in Mean-Field Games System," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 332-357, October.
    6. Agazzi, Andrea & Andreis, Luisa & Patterson, Robert I.A. & Renger, D.R. Michiel, 2022. "Large deviations for Markov jump processes with uniformly diminishing rates," Stochastic Processes and their Applications, Elsevier, vol. 152(C), pages 533-559.
    7. Fu, Guanxing & Horst, Ulrich, 2017. "Mean Field Games with Singular Controls," Rationality and Competition Discussion Paper Series 22, CRC TRR 190 Rationality and Competition.
    8. Dianetti, Jodi, 2023. "Strong Solutions to Submodular Mean Field Games with Common Noise and Related McKean-Vlasov FBSDES," Center for Mathematical Economics Working Papers 674, Center for Mathematical Economics, Bielefeld University.
    9. Ren'e Aid & Ofelia Bonesini & Giorgia Callegaro & Luciano Campi, 2021. "A McKean-Vlasov game of commodity production, consumption and trading," Papers 2111.04391, arXiv.org.
    10. Li-Hsien Sun, 2022. "Mean Field Games with Heterogeneous Groups: Application to Banking Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 130-167, January.
    11. Shuzhen Yang, 2020. "Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis," Papers 2011.10966, arXiv.org.
    12. Amogh Deshpande, 2014. "Comparing the Value at Risk Performance of the CreditRisk + and its Enhancement: A Large Deviations Approach," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 1009-1023, December.
    13. Dianetti, Jodi & Ferrari, Giorgio & Fischer, Markus & Nendel, Max, 2022. "A Unifying Framework for Submodular Mean Field Games," Center for Mathematical Economics Working Papers 661, Center for Mathematical Economics, Bielefeld University.
    14. Huaming Du & Xingyan Chen & Yu Zhao & Qing Li & Fuzhen Zhuang & Fuji Ren & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised Mar 2025.
    15. Igor Prünster & Matteo Ruggiero, 2011. "A Bayesian nonparametric approach to modeling market share dynamics," Carlo Alberto Notebooks 217, Collegio Carlo Alberto.
    16. Li-Hsien Sun, 2018. "Systemic Risk and Interbank Lending," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 400-424, November.
    17. E. Löcherbach, 2020. "Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2280-2314, December.
    18. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    19. Dai Pra, Paolo & Formentin, Marco & Pelino, Guglielmo, 2021. "A hierarchical mean field model of interacting spins," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 287-338.
    20. Alessandro Calvia & Salvatore Federico & Giorgio Ferrari & Fausto Gozzi, 2024. "Existence and uniqueness results for a mean-field game of optimal investment," Papers 2404.02871, arXiv.org, revised Nov 2024.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4510-4555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.