IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i10p1669-d420935.html
   My bibliography  Save this article

Explicit Characterization of Feedback Nash Equilibria for Indefinite, Linear-Quadratic, Mean-Field-Type Stochastic Zero-Sum Differential Games with Jump-Diffusion Models

Author

Listed:
  • Jun Moon

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Wonhee Kim

    (School of Energy Systems Engineering, Chung-Ang University, Seoul 06974, Korea)

Abstract

We consider the indefinite, linear-quadratic, mean-field-type stochastic zero-sum differential game for jump-diffusion models (I-LQ-MF-SZSDG-JD). Specifically, there are two players in the I-LQ-MF-SZSDG-JD, where Player 1 minimizes the objective functional, while Player 2 maximizes the same objective functional. In the I-LQ-MF-SZSDG-JD, the jump-diffusion-type state dynamics controlled by the two players and the objective functional include the mean-field variables, i.e., the expected values of state and control variables, and the parameters of the objective functional do not need to be (positive) definite matrices. These general settings of the I-LQ-MF-SZSDG-JD make the problem challenging, compared with the existing literature. By considering the interaction between two players and using the completion of the squares approach, we obtain the explicit feedback Nash equilibrium, which is linear in state and its expected value, and expressed as the coupled integro-Riccati differential equations (CIRDEs). Note that the interaction between the players is analyzed via a class of nonanticipative strategies and the “ordered interchangeability” property of multiple Nash equilibria in zero-sum games. We obtain explicit conditions to obtain the Nash equilibrium in terms of the CIRDEs. We also discuss the different solvability conditions of the CIRDEs, which lead to characterization of the Nash equilibrium for the I-LQ-MF-SZSDG-JD. Finally, our results are applied to the mean-field-type stochastic mean-variance differential game, for which the explicit Nash equilibrium is obtained and the simulation results are provided.

Suggested Citation

  • Jun Moon & Wonhee Kim, 2020. "Explicit Characterization of Feedback Nash Equilibria for Indefinite, Linear-Quadratic, Mean-Field-Type Stochastic Zero-Sum Differential Games with Jump-Diffusion Models," Mathematics, MDPI, vol. 8(10), pages 1-23, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1669-:d:420935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/10/1669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/10/1669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graham, Carl, 1992. "McKean-Vlasov Ito-Skorohod equations, and nonlinear diffusions with discrete jump sets," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 69-82, February.
    2. Alain Bensoussan & Boualem Djehiche & Hamidou Tembine & Sheung Chi Phillip Yam, 2020. "Mean-Field-Type Games with Jump and Regime Switching," Dynamic Games and Applications, Springer, vol. 10(1), pages 19-57, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. E. Löcherbach, 2020. "Convergence to Equilibrium for Time-Inhomogeneous Jump Diffusions with State-Dependent Jump Intensity," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2280-2314, December.
    3. Dianetti, Jodi & Ferrari, Giorgio & Tzouanas, Ioannis, 2023. "Ergodic Mean-Field Games of Singular Control with Regime-Switching (extended version)," Center for Mathematical Economics Working Papers 681, Center for Mathematical Economics, Bielefeld University.
    4. Yulin Song, 2020. "Gradient Estimates and Exponential Ergodicity for Mean-Field SDEs with Jumps," Journal of Theoretical Probability, Springer, vol. 33(1), pages 201-238, March.
    5. Detering, Nils & Fouque, Jean-Pierre & Ichiba, Tomoyuki, 2020. "Directed chain stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2519-2551.
    6. Graham, Carl, 2011. "Convergence of multi-class systems of fixed possibly infinite sizes," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 31-35, January.
    7. Tugaut, Julian, 2013. "Self-stabilizing processes in multi-wells landscape in Rd-convergence," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1780-1801.
    8. Zahrate El Oula Frihi & Julian Barreiro-Gomez & Salah Eddine Choutri & Hamidou Tembine, 2020. "Hierarchical Structures and Leadership Design in Mean-Field-Type Games with Polynomial Cost," Games, MDPI, vol. 11(3), pages 1-26, August.
    9. Benazzoli, Chiara & Campi, Luciano & Di Persio, Luca, 2020. "Mean field games with controlled jump–diffusion dynamics: Existence results and an illiquid interbank market model," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6927-6964.
    10. Bayraktar, Erhan & Wu, Ruoyu, 2021. "Mean field interaction on random graphs with dynamically changing multi-color edges," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 197-244.
    11. Dai Pra, Paolo & Formentin, Marco & Pelino, Guglielmo, 2021. "A hierarchical mean field model of interacting spins," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 287-338.
    12. Tomoyuki Ichiba & Michael Ludkovski & Andrey Sarantsev, 2019. "Dynamic contagion in a banking system with births and defaults," Annals of Finance, Springer, vol. 15(4), pages 489-538, December.
    13. Erny, Xavier, 2022. "Well-posedness and propagation of chaos for McKean–Vlasov equations with jumps and locally Lipschitz coefficients," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 192-214.
    14. Benazzoli, Chiara & Campi, Luciano & Di Persio, Luca, 2019. "ε-Nash equilibrium in stochastic differential games with mean-field interaction and controlled jumps," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    15. Cecchin, Alekos & Pelino, Guglielmo, 2019. "Convergence, fluctuations and large deviations for finite state mean field games via the Master Equation," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4510-4555.
    16. Adrian Patrick Kennedy & Suresh P. Sethi & Chi Chung Siu & Sheung Chi Phillip Yam, 2021. "Cooperative Advertising in a Dynamic Three‐Echelon Supply Chain," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 3881-3905, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:10:p:1669-:d:420935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.