Learning from MOM’s principles: Le Cam’s approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2018.11.024
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Baraud, Y. & Birgé, L., 2016. "Rho-estimators for shape restricted density estimation," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3888-3912.
- Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Brunet-Saumard, Camille & Genetay, Edouard & Saumard, Adrien, 2022. "K-bMOM: A robust Lloyd-type clustering algorithm based on bootstrap median-of-means," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- P Alquier & M Gerber, 2024. "Universal robust regression via maximum mean discrepancy," Biometrika, Biometrika Trust, vol. 111(1), pages 71-92.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guillaume Lecué & Mathieu Lerasle, 2017. "Robust machine learning by median-of-means : theory and practice," Working Papers 2017-32, Center for Research in Economics and Statistics.
- Yang, Xuzhi & Wang, Tengyao, 2024. "Multiple-output composite quantile regression through an optimal transport lens," LSE Research Online Documents on Economics 125589, London School of Economics and Political Science, LSE Library.
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Fan, Jianqing & Guo, Yongyi & Jiang, Bai, 2022. "Adaptive Huber regression on Markov-dependent data," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 802-818.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Sung Hoon Choi & Donggyu Kim, 2023. "Large Global Volatility Matrix Analysis Based on Observation Structural Information," Papers 2305.01464, arXiv.org, revised Feb 2024.
- Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
- Choi, Sung Hoon & Kim, Donggyu, 2023.
"Large volatility matrix analysis using global and national factor models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1917-1933.
- Sung Hoon Choi & Donggyu Kim, 2022. "Large Volatility Matrix Analysis Using Global and National Factor Models," Papers 2208.12323, arXiv.org, revised Dec 2022.
- Zhao, Jun & Chen, Yingyu & Zhang, Yi, 2018. "Expectile regression for analyzing heteroscedasticity in high dimension," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 304-311.
- Beyhum, Jad, 2019.
"Inference robust to outliers with L1‐norm penalization,"
TSE Working Papers
19-1032, Toulouse School of Economics (TSE).
- Jad Beyhum, 2020. "Inference robust to outliers with L1‐norm penalization," Post-Print hal-03235868, HAL.
- Fan, Jianqing & Wang, Weichen & Zhong, Yiqiao, 2019. "Robust covariance estimation for approximate factor models," Journal of Econometrics, Elsevier, vol. 208(1), pages 5-22.
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019.
"Inference of Break-Points in High-Dimensional Time Series,"
IRTG 1792 Discussion Papers
2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chen, Likai & Wang, Weining & Wu, Wei Biao, 2020. "Inference of breakpoints in high-dimensional time series," IRTG 1792 Discussion Papers 2020-019, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Jun Zhao & Guan’ao Yan & Yi Zhang, 2022. "Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity," Statistical Papers, Springer, vol. 63(1), pages 1-28, February.
- Xiao, Xuan & Xu, Xingbai & Zhong, Wei, 2023. "Huber estimation for the network autoregressive model," Statistics & Probability Letters, Elsevier, vol. 203(C).
- Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
- Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Dongxiao Han & Miao Han & Jian Huang & Yuanyuan Lin, 2023. "Robust inference for high‐dimensional single index models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1590-1615, December.
- Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
- Yue Wang & Baobin Wang & Chaoquan Peng & Xuefeng Li & Hong Yin, 2022. "Huber Regression Analysis with a Semi-Supervised Method," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:11:p:4385-4410. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i11p4385-4410.html