IDEAS home Printed from
   My bibliography  Save this article

Representing filtration consistent nonlinear expectations as g-expectations in general probability spaces


  • Cohen, Samuel N.


We consider filtration consistent nonlinear expectations in probability spaces satisfying only the usual conditions and separability. Under a domination assumption, we demonstrate that these nonlinear expectations can be expressed as the solutions to Backward Stochastic Differential Equations with Lipschitz continuous drivers, where both the martingale and the driver terms are permitted to jump, and the martingale representation is infinite dimensional. To establish this result, we show that this domination condition is sufficient to guarantee that the comparison theorem for BSDEs will hold, and we generalise the nonlinear Doob–Meyer decomposition of Peng to a general context.

Suggested Citation

  • Cohen, Samuel N., 2012. "Representing filtration consistent nonlinear expectations as g-expectations in general probability spaces," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1601-1626.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1601-1626 DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    2. Jocelyne Bion-Nadal, 2008. "Dynamic risk measures: Time consistency and risk measures from BMO martingales," Finance and Stochastics, Springer, vol. 12(2), pages 219-244, April.
    3. Cohen, Samuel N. & Elliott, Robert J., 2010. "A general theory of finite state Backward Stochastic Difference Equations," Stochastic Processes and their Applications, Elsevier, vol. 120(4), pages 442-466, April.
    4. Royer, Manuela, 2006. "Backward stochastic differential equations with jumps and related non-linear expectations," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1358-1376, October.
    5. Bion-Nadal, Jocelyne, 2009. "Time consistent dynamic risk processes," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 633-654, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:apmaco:v:263:y:2015:i:c:p:1-11 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:4:p:1601-1626. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.