IDEAS home Printed from
   My bibliography  Save this article

Neighborhood radius estimation for variable-neighborhood random fields


  • Löcherbach, Eva
  • Orlandi, Enza


We consider random fields defined by finite-region conditional probabilities depending on a neighborhood of the region which changes with the boundary conditions. To predict the symbols within any finite region, it is necessary to inspect a random number of neighborhood symbols which might change according to the value of them. In analogy with the one-dimensional setting we call these neighborhood symbols the context associated to the region at hand. This framework is a natural extension, to d-dimensional fields, of the notion of variable length Markov chains introduced by Rissanen [24] in his classical paper. We define an algorithm to estimate the radius of the smallest ball containing the context based on a realization of the field. We prove the consistency of this estimator. Our proofs are constructive and yield explicit upper bounds for the probability of wrong estimation of the radius of the context.

Suggested Citation

  • Löcherbach, Eva & Orlandi, Enza, 2011. "Neighborhood radius estimation for variable-neighborhood random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(9), pages 2151-2185, September.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:9:p:2151-2185

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Peter D. Grünwald, 2007. "The Minimum Description Length Principle," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262072815, January.
    2. Fiorenzo Ferrari & Abraham Wyner, 2003. "Estimation of General Stationary Processes by Variable Length Markov Chains," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 459-480.
    3. Dzhaparidze, K. & van Zanten, J. H., 2001. "On Bernstein-type inequalities for martingales," Stochastic Processes and their Applications, Elsevier, vol. 93(1), pages 109-117, May.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:9:p:2151-2185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.