IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v87y2023ipas0038012123000101.html
   My bibliography  Save this article

A three-step optimization-based algorithm for home healthcare delivery

Author

Listed:
  • Guo, Jia
  • Bard, Jonathan F.

Abstract

This paper examines the problem of providing healthcare services to patients who reside at various aging, rehabilitation and treatment facilities or who are home bound, and who may require multiple visits per week. To meet this goal, a 3-step algorithm is developed that efficiently constructs weekly schedules for individual providers working through an agency. The objective is to balance a set of metrics that include travel distance, productivity points, daily workload, equity, overtime and the need to accommodate breaks. Additional factors include patient time windows, continuity of care, and nurse skill qualifications, all of which are treated as soft constraints. In Step 1 of the algorithm, we divide locations of requested visits into distinct clusters and assign each visit to a provider. Both k-means clustering and a mixed-integer linear programming model are applied iteratively until no local improvement is possible. In Step 2, a modified traveling salesman problem is formulated and solved for each nurse each day to find optimal schedules and routes. In Step 3, a local search heuristic based on swapping and gap adjustments is developed to improve the solution obtained in Step 2 and to add a lunch break to each schedule. The procedure is tested on instances with up to 20 nurses and 440 requested visits per week with data provided by a national home healthcare agency, and comparisons are drawn with the actual schedules used over several months. Statistical tests verify that the proposed approach offers significantly better schedules for both nurses and patients. We conclude with a sensitivity analysis of the demand–supply ratio to determine its effect on solution quality.

Suggested Citation

  • Guo, Jia & Bard, Jonathan F., 2023. "A three-step optimization-based algorithm for home healthcare delivery," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
  • Handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000101
    DOI: 10.1016/j.seps.2023.101517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123000101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Bowers & Helen Cheyne & Gillian Mould & Miranda Page, 2015. "Continuity of care in community midwifery," Health Care Management Science, Springer, vol. 18(2), pages 195-204, June.
    2. Aliza Heching & J. N. Hooker & Ryo Kimura, 2019. "A Logic-Based Benders Approach to Home Healthcare Delivery," Transportation Science, INFORMS, vol. 53(2), pages 510-522, March.
    3. Cinar, Ahmet & Salman, F. Sibel & Bozkaya, Burcin, 2021. "Prioritized single nurse routing and scheduling for home healthcare services," European Journal of Operational Research, Elsevier, vol. 289(3), pages 867-878.
    4. Yufen Shao & Jonathan Bard & Ahmad Jarrah, 2012. "The therapist routing and scheduling problem," IISE Transactions, Taylor & Francis Journals, vol. 44(10), pages 868-893.
    5. George Kontoravdis & Jonathan F. Bard, 1995. "A GRASP for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 10-23, February.
    6. Mustafa Demirbilek & Juergen Branke & Arne K. Strauss, 2021. "Home healthcare routing and scheduling of multiple nurses in a dynamic environment," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 253-280, March.
    7. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    8. Jonathan Bard & Yufen Shao & Xiangtong Qi & Ahmad Jarrah, 2014. "The traveling therapist scheduling problem," IISE Transactions, Taylor & Francis Journals, vol. 46(7), pages 683-706.
    9. Yadav, Niteesh & Tanksale, Ajinkya, 2022. "An integrated routing and scheduling problem for home healthcare delivery with limited person-to-person contact," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1100-1125.
    10. Grenouilleau, Florian & Legrain, Antoine & Lahrichi, Nadia & Rousseau, Louis-Martin, 2019. "A set partitioning heuristic for the home health care routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 295-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osman Atilla Yazır & Çağrı Koç & Eda Yücel, 2023. "The multi-period home healthcare routing and scheduling problem with electric vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 853-901, September.
    2. Jalel Euchi & Malek Masmoudi & Patrick Siarry, 2022. "Home health care routing and scheduling problems: a literature review," 4OR, Springer, vol. 20(3), pages 351-389, September.
    3. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    5. Jonathan F. Bard & George Kontoravdis & Gang Yu, 2002. "A Branch-and-Cut Procedure for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 36(2), pages 250-269, May.
    6. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    7. Shima Azizi & Özge Aygül & Brenton Faber & Sharon Johnson & Renata Konrad & Andrew C. Trapp, 2023. "Select, route and schedule: optimizing community paramedicine service delivery with mandatory visits and patient prioritization," Health Care Management Science, Springer, vol. 26(4), pages 719-746, December.
    8. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    9. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    10. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    11. Biao Yuan & Zhibin Jiang, 2017. "Disruption Management for the Real-Time Home Caregiver Scheduling and Routing Problem," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    12. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    13. Andrew Lim & Xingwen Zhang, 2007. "A Two-Stage Heuristic with Ejection Pools and Generalized Ejection Chains for the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 443-457, August.
    14. Michel Gendreau & Jean-Yves Potvin, 2005. "Metaheuristics in Combinatorial Optimization," Annals of Operations Research, Springer, vol. 140(1), pages 189-213, November.
    15. Christos D. Tarantilis & Afroditi K. Anagnostopoulou & Panagiotis P. Repoussis, 2013. "Adaptive Path Relinking for Vehicle Routing and Scheduling Problems with Product Returns," Transportation Science, INFORMS, vol. 47(3), pages 356-379, August.
    16. Wanpracha Chaovalitwongse & Dukwon Kim & Panos M. Pardalos, 2003. "GRASP with a New Local Search Scheme for Vehicle Routing Problems with Time Windows," Journal of Combinatorial Optimization, Springer, vol. 7(2), pages 179-207, June.
    17. R. Montemanni & L. M. Gambardella & A. E. Rizzoli & A. V. Donati, 2005. "Ant Colony System for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization, Springer, vol. 10(4), pages 327-343, December.
    18. Ana Anokić & Zorica Stanimirović & Đorđe Stakić & Tatjana Davidović, 2021. "Metaheuristic approaches to a vehicle scheduling problem in sugar beet transportation," Operational Research, Springer, vol. 21(3), pages 2021-2053, September.
    19. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2004. "A Decomposition Approach for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 38(4), pages 488-502, November.
    20. Olli Bräysy, 2003. "A Reactive Variable Neighborhood Search for the Vehicle-Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 347-368, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.