IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v215y2025ics136403212500259x.html
   My bibliography  Save this article

Biomimetic adaptive solar building envelopes: Trends, challenges, and opportunities for sustainable applications

Author

Listed:
  • Jalali, Sara
  • Badarnah, Lidia
  • Nicoletti, Eleonora

Abstract

As global energy demand continues to rise, the importance of effective solar management in building design becomes increasingly critical. Solar management encompasses strategies for harvesting, regulating, and utilizing solar energy, contributing significantly to sustainable and renewable energy solutions. Biomimetics presents a promising approach to adaptive design by drawing inspiration from nature’s solar management strategies. This research conducts a systematic review of biomimetic adaptive solar building envelopes (Bio-ASBEs), classifying them into three key solar management strategies: solar regulation, solar harvesting, and thermoregulation. A comparative analysis of existing studies highlights trends, gaps, and opportunities in the field. Findings indicate growing interest in biomimetic solutions for solar management, with a predominant focus on energy efficiency. However, the study identifies limited research on energy harvesting and indoor environmental quality, as well as a reliance on shading techniques, potentially overlooking alternative thermoregulation and solar harvesting strategies. Furthermore, the study highlights the scarcity of mixed-method research, emphasizing the need for multifaceted approaches that integrate, qualitative and quantitative data into actionable solutions. Finally, this study reveals the untapped potential of biomimetic solar management strategies, demonstrating how integrating solar harvesting, regulation, and thermoregulation can drive the development of adaptive, energy-efficient building envelopes. By bridging research gaps and exploring nature-inspired multifunctional solutions, it paves the way for scalable, climate-responsive technologies that support net-zero goals and a more sustainable built environment.

Suggested Citation

  • Jalali, Sara & Badarnah, Lidia & Nicoletti, Eleonora, 2025. "Biomimetic adaptive solar building envelopes: Trends, challenges, and opportunities for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:rensus:v:215:y:2025:i:c:s136403212500259x
    DOI: 10.1016/j.rser.2025.115586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212500259X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    2. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2022. "A critical review of biomimetic building envelopes: towards a bio-adaptive model from nature to architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Tiffany Cheng & Yasaman Tahouni & Ekin Sila Sahin & Kim Ulrich & Silvia Lajewski & Christian Bonten & Dylan Wood & Jürgen Rühe & Thomas Speck & Achim Menges, 2024. "Weather-responsive adaptive shading through biobased and bioinspired hygromorphic 4D-printing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Randall M. Erb & Jonathan S. Sander & Roman Grisch & André R. Studart, 2013. "Self-shaping composites with programmable bioinspired microstructures," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    5. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2023. "Smart materials for biomimetic building envelopes: current trends and potential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
    7. Fiorito, Francesco & Sauchelli, Michele & Arroyo, Diego & Pesenti, Marco & Imperadori, Marco & Masera, Gabriele & Ranzi, Gianluca, 2016. "Shape morphing solar shadings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 863-884.
    8. Tessa Hubert & Antoine Dugué & Tingting Vogt Wu & Fabienne Aujard & Denis Bruneau, 2022. "An Adaptive Building Skin Concept Resulting from a New Bioinspiration Process: Design, Prototyping, and Characterization," Energies, MDPI, vol. 15(3), pages 1-19, January.
    9. Sara Jalali & Eleonora Nicoletti & Lidia Badarnah, 2024. "From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies," Sustainability, MDPI, vol. 16(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, M. & Figueiredo, A. & Almeida, R.M.S.F. & Vicente, R., 2024. "Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    3. Sommese, Francesco & Badarnah, Lidia & Ausiello, Gigliola, 2023. "Smart materials for biomimetic building envelopes: current trends and potential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Al-Obaidi, Karam M. & Azzam Ismail, Muhammad & Hussein, Hazreena & Abdul Rahman, Abdul Malik, 2017. "Biomimetic building skins: An adaptive approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1472-1491.
    5. Ali M. A. Faragalla & Somayeh Asadi, 2022. "Biomimetic Design for Adaptive Building Façades: A Paradigm Shift towards Environmentally Conscious Architecture," Energies, MDPI, vol. 15(15), pages 1-22, July.
    6. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    7. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    8. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    9. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    10. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
    11. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    12. Wei Du & Feng Gao & Peng Cui & Zhiwu Yu & Wei Tong & Jihao Wang & Zhuang Ren & Chuang Song & Jiaying Xu & Haifeng Ma & Liyun Dang & Di Zhang & Qingyou Lu & Jun Jiang & Junfeng Wang & Li Pi & Zhigao Sh, 2023. "Twisting, untwisting, and retwisting of elastic Co-based nanohelices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    14. Sara Jalali & Eleonora Nicoletti & Lidia Badarnah, 2024. "From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies," Sustainability, MDPI, vol. 16(3), pages 1-18, January.
    15. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    16. Ana Vaz Sá & Miguel Azenha & A.S. Guimarães & J.M.P.Q. Delgado, 2020. "FEM Applied to Building Physics: Modeling Solar Radiation and Heat Transfer of PCM Enhanced Test Cells," Energies, MDPI, vol. 13(9), pages 1-19, May.
    17. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    18. Ahmad, Abrar & Memon, Shazim Ali, 2024. "A novel method to evaluate phase change materials' impact on buildings' energy, economic, and environmental performance via controlled natural ventilation," Applied Energy, Elsevier, vol. 353(PB).
    19. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    20. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:215:y:2025:i:c:s136403212500259x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.