IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics1364032125001376.html
   My bibliography  Save this article

LaCoO3 photocatalyst for environmental remediation and energy conversion applications

Author

Listed:
  • Jayapandi, S.
  • Aditya, D.S.
  • Mahadevaprasad, K.N.
  • Santhosh, K.N.
  • Yoon, Hyeonseok
  • Nataraj, S.K.

Abstract

Water quality and sanitation (Goal 6) and clean energy (Goal 7) have been some of the main focus under United Nations Sustainable Development Goals (UN-SDGs) which is closely intertwined with other goals such as poverty, health, sustainable cities and communities. Advanced efforts are being made to develop materials a method to explore innovative methods and materials stocks to fulfil the SDGs for future. Lanthanum Cobaltite (LaCoO3) perovskite oxide photocatalyst has garnered significant interest in various applications, including the remediation of organic pollutants through degradation in water treatment, hydrogen (H2) production, and Carbon dioxide (CO2) reduction. This review work offers a critical overview and detailed discussion of LaCoO3 based perovskite oxide photocatalyst systems that operate in the visible light range (λ > 400 nm). Moreover, it explores the mechanisms involved in the degradation of organic contaminants, hydrogen production, and CO2 reduction, providing interpretations for their formation and the steps involved in these processes. Although LaCoO3 based photocatalysts have demonstrated substantial potential for practical applications, challenges such as low charge transfer mobility, high electron-hole recombination rates, and the positions of the Valence Band Maximum (VBM) and Conduction Band Minimum (CBM) present significant barriers to large-scale implementation. This review critically evaluates various preparation routes for LaCoO3, emphasizing the importance of synthesis methods in optimizing photocatalytic performance. It also discusses the effects of transition metal doping, the formation of heterojunctions with LaCoO3 using other semiconductors, and the role of LaCoO3 as a co-catalyst in visible-light-driven photocatalysis. Furthermore, it addresses challenges related to hydrogen production, the degradation of organic pollutants, and selectivity issues in photocatalytic CO2 reduction.

Suggested Citation

  • Jayapandi, S. & Aditya, D.S. & Mahadevaprasad, K.N. & Santhosh, K.N. & Yoon, Hyeonseok & Nataraj, S.K., 2025. "LaCoO3 photocatalyst for environmental remediation and energy conversion applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001376
    DOI: 10.1016/j.rser.2025.115464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Zhoufeng & Wang, Zhigang & Jiang, Bo & Hongmanorom, Plaifa & Zhong, Wenqi & Kawi, Sibudjing, 2020. "A review on perovskite catalysts for reforming of methane to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Akihiko Ikeda & Yasuhiro H. Matsuda & Keisuke Sato & Yuto Ishii & Hironobu Sawabe & Daisuke Nakamura & Shojiro Takeyama & Joji Nasu, 2023. "Signature of spin-triplet exciton condensations in LaCoO3 at ultrahigh magnetic fields up to 600 T," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Piyush Pratap & Jaswal, Anurag & Nirmalkar, Neelkanth & Mondal, Tarak, 2023. "Synergistic effect of transition metals substitution on the catalytic activity of LaNi0.5M0.5O3 (M = Co, Cu, and Fe) perovskite catalyst for steam reforming of simulated bio-oil for green hydrogen pro," Renewable Energy, Elsevier, vol. 207(C), pages 575-587.
    2. Liu, Ji & Sun, Huai-de & Hu, Si-Han & Hu, Bin & Fang, Zhi-mo & Li, Ji-hong & Zhang, Zhen-xi & Lu, Qiang, 2024. "Hydrogen production from the steam reforming of biogas over Ni-based catalyst: The role of promoters and supports," Energy, Elsevier, vol. 311(C).
    3. Georgiadis, Amvrosios G. & Tsiotsias, Anastasios I. & Siakavelas, George I. & Charisiou, Nikolaos D. & Ehrhardt, Benedikt & Wang, Wen & Sebastian, Victor & Hinder, Steven J. & Baker, Mark A. & Mascott, 2024. "An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)," Renewable Energy, Elsevier, vol. 227(C).
    4. Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
    5. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Feng, Yanling & Ling, Yeqing & Wang, Yakun & Li, Peijun & Xiao, Rui & Yang, Guangming & Li, Tao, 2025. "Membrane reactors for sustainable production of fuels and value-added chemicals: Innovations, challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
    7. Li, Heyu & Sun, Zhe & Cao, Yan, 2024. "Experimental and process simulation on solid fuel chemical looping cascade utilization conversion technology aiming hydrogen generation," Renewable Energy, Elsevier, vol. 235(C).
    8. Vladislav Sadykov & Mikhail Simonov & Nikita Eremeev & Natalia Mezentseva, 2021. "Modern Trends in Design of Catalysts for Transformation of Biofuels into Syngas and Hydrogen: From Fundamental Bases to Performance in Real Feeds," Energies, MDPI, vol. 14(19), pages 1-25, October.
    9. Tan, Tao & Chen, Yushu & Wang, Yongyue & Li, Zuhao & Zhang, Zhige & Xie, Jun & Chen, Yong, 2024. "Insight into the effects of the CO2/H2O activation and Ce redox cycle over ni/CeO2/hydrotalcite catalyst surface on biogas Bi-reforming for methanol friendly syngas," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.