Advances in non-intrusive load monitoring for the industrial domain: Challenges, insights, and path forward
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2024.115136
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tanoni, Giulia & Principi, Emanuele & Squartini, Stefano, 2024. "Non-Intrusive Load Monitoring in industrial settings: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Simone Mari & Giovanni Bucci & Fabrizio Ciancetta & Edoardo Fiorucci & Andrea Fioravanti, 2022. "A Review of Non-Intrusive Load Monitoring Applications in Industrial and Residential Contexts," Energies, MDPI, vol. 15(23), pages 1-21, November.
- Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano & Saad Dosse Bennani & Hakim El Fadili, 2022. "Non-Intrusive Load Monitoring of Household Devices Using a Hybrid Deep Learning Model through Convex Hull-Based Data Selection," Energies, MDPI, vol. 15(3), pages 1-22, February.
- Wang, Zhongrui & Xu, Yonghai & He, Sheng & Yuan, Jindou & Yang, Heng & Pan, Mingming, 2023. "A non-intrusive method of industrial load disaggregation based on load operating states and improved grey wolf algorithm," Applied Energy, Elsevier, vol. 351(C).
- Oladayo S. Ajani & Abhishek Kumar & Rammohan Mallipeddi & Swagatam Das & Ponnuthurai Nagaratnam Suganthan, 2022. "Benchmarking Optimization-Based Energy Disaggregation Algorithms," Energies, MDPI, vol. 15(5), pages 1-19, February.
- Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
- Petros Papageorgiou & Dimitra Mylona & Konstantinos Stergiou & Aggelos S. Bouhouras, 2023. "A Time-Driven Deep Learning NILM Framework Based on Novel Current Harmonic Distortion Images," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
- Yongtao Shi & Xiaodong Zhao & Fan Zhang & Yaguang Kong, 2022. "Non-Intrusive Load Monitoring Based on Swin-Transformer with Adaptive Scaling Recurrence Plot," Energies, MDPI, vol. 15(20), pages 1-18, October.
- Sara Tavakoli & Kaveh Khalilpour, 2021. "A Practical Load Disaggregation Approach for Monitoring Industrial Users Demand with Limited Data Availability," Energies, MDPI, vol. 14(16), pages 1-27, August.
- Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tanoni, Giulia & Principi, Emanuele & Squartini, Stefano, 2024. "Non-Intrusive Load Monitoring in industrial settings: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Wang, Zhongrui & Xu, Yonghai & He, Sheng & Yuan, Jindou & Yang, Heng & Pan, Mingming, 2023. "A non-intrusive method of industrial load disaggregation based on load operating states and improved grey wolf algorithm," Applied Energy, Elsevier, vol. 351(C).
- Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
- Jeewon Park & Oladayo S. Ajani & Rammohan Mallipeddi, 2023. "Optimization-Based Energy Disaggregation: A Constrained Multi-Objective Approach," Mathematics, MDPI, vol. 11(3), pages 1-13, January.
- Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
- Jiachuan Shi & Dingrui Zhi & Rao Fu, 2023. "Research on a Non-Intrusive Load Recognition Algorithm Based on High-Frequency Signal Decomposition with Improved VI Trajectory and Background Color Coding," Mathematics, MDPI, vol. 12(1), pages 1-20, December.
- Botman, Lola & Lago, Jesus & Fu, Xiaohan & Chia, Keaton & Wolf, Jesse & Kleissl, Jan & De Moor, Bart, 2024. "Building plug load mode detection, forecasting and scheduling," Applied Energy, Elsevier, vol. 364(C).
- Yin, Linfei & Wang, Nannan & Li, Jishen, 2025. "Electricity terminal multi-label recognition with a “one-versus-all” rejection recognition algorithm based on adaptive distillation increment learning and attention MobileNetV2 network for non-invasiv," Applied Energy, Elsevier, vol. 382(C).
- Athanasiadis, C.L. & Papadopoulos, T.A. & Kryonidis, G.C. & Doukas, D.I., 2024. "A review of distribution network applications based on smart meter data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Kazuki Okazawa & Naoya Kaneko & Dafang Zhao & Hiroki Nishikawa & Ittetsu Taniguchi & Francky Catthoor & Takao Onoye, 2024. "Evaluation of Deep Learning-Based Non-Intrusive Thermal Load Monitoring," Energies, MDPI, vol. 17(9), pages 1-17, April.
- Viktor Isanbaev & Raúl Baños & Fernando Martínez & Alfredo Alcayde & Consolación Gil, 2024. "Monitoring Energy and Power Quality of the Loads in a Microgrid Laboratory Using Smart Meters," Energies, MDPI, vol. 17(5), pages 1-10, March.
- Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
- Camilo Carrillo & Eloy Díaz Dorado & José Cidrás Pidre & Julio Garrido Campos & Diego San Facundo López & Luiz A. Lisboa Cardoso & Cristina I. Martínez Castañeda & José F. Sánchez Rúa, 2023. "Detailed Energy Analysis of a Sheet-Metal-Forming Press from Electrical Measurements," Energies, MDPI, vol. 16(19), pages 1-17, October.
- Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
- Chen, Lin & Tang, Zhiyuan & He, Shuaijia & Liu, Junyong, 2024. "Feasible operation region estimation of virtual power plant considering heterogeneity and uncertainty of distributed energy resources," Applied Energy, Elsevier, vol. 362(C).
- Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
More about this item
Keywords
Non-intrusive load monitoring; Smart meters; Energy disaggregation; Industrial energy management; Power quality features;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124008621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.