IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124007640.html
   My bibliography  Save this article

Advances in the microbial biosynthesis of methyl ketones

Author

Listed:
  • Xu, Shijie
  • Zhang, Qi
  • Dong, Genlai
  • Liu, Zihe
  • Fu, Jinyu
  • Shi, Shuobo

Abstract

Methyl ketone, a fatty acid derivative, has attracted extensive attention due to its remarkable properties such as a high cetane number, low freezing point, immiscibility with water, and high compatibility with diesel and other quality biofuel properties. Methyl ketones are downstream products of fatty acid metabolism in microorganisms, making them readily accessible through metabolic engineering. In addition, methyl ketones are easily isolated during biological fermentation, as they can be extracted by organic solvents in medium. Consequently, the utilization of microorganisms for the production of methyl ketones as a viable biofuel alternative has garnered growing interest and achieved substantial advancements. This review aims to comprehensively and critically examine the latest advances in biosynthetic pathways for the synthesis of methyl ketones and corresponding metabolic engineering strategies. These pathways include fatty acid synthesis pathway, fatty acid β-oxidation derived pathway, CoA-dependent pathway, 2-butanone synthesis pathway and polyketide synthases synthesis pathway. Furthermore, key challenges and perspectives have been discussed for advancing research in the field of methyl ketone biosynthesis.

Suggested Citation

  • Xu, Shijie & Zhang, Qi & Dong, Genlai & Liu, Zihe & Fu, Jinyu & Shi, Shuobo, 2025. "Advances in the microbial biosynthesis of methyl ketones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007640
    DOI: 10.1016/j.rser.2024.115038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Gajewski & Renata Pavlovic & Manuel Fischer & Eckhard Boles & Martin Grininger, 2017. "Engineering fungal de novo fatty acid synthesis for short chain fatty acid production," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    2. Yueping Zhang & Juan Wang & Zibai Wang & Yiming Zhang & Shuobo Shi & Jens Nielsen & Zihe Liu, 2019. "A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Satoshi Yuzawa & Mona Mirsiaghi & Renee Jocic & Tatsuya Fujii & Fabrice Masson & Veronica T. Benites & Edward E. K. Baidoo & Eric Sundstrom & Deepti Tanjore & Todd R. Pray & Anthe George & Ryan W. Dav, 2018. "Short-chain ketone production by engineered polyketide synthases in Streptomyces albus," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Qiang Yan & William T. Cordell & Michael A. Jindra & Dylan K. Courtney & Madeline K. Kuckuk & Xuanqi Chen & Brian F. Pfleger, 2022. "Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Yongjin J. Zhou & Nicolaas A. Buijs & Zhiwei Zhu & Jiufu Qin & Verena Siewers & Jens Nielsen, 2016. "Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    7. Clementina Dellomonaco & James M. Clomburg & Elliot N. Miller & Ramon Gonzalez, 2011. "Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals," Nature, Nature, vol. 476(7360), pages 355-359, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zihe & Moradi, Hamideh & Shi, Shuobo & Darvishi, Farshad, 2021. "Yeasts as microbial cell factories for sustainable production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Dias, Bruna & Lopes, Marlene & Fernandes, Helena & Marques, Susana & Gírio, Francisco & Belo, Isabel, 2024. "Biomass and microbial lipids production by Yarrowia lipolytica W29 from eucalyptus bark hydrolysate," Renewable Energy, Elsevier, vol. 224(C).
    4. M. Tanvir Rahman & M. Kristian Koski & Joanna Panecka-Hofman & Werner Schmitz & Alexander J. Kastaniotis & Rebecca C. Wade & Rik K. Wierenga & J. Kalervo Hiltunen & Kaija J. Autio, 2023. "An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Peiling Wu & Haofeng Chen & Yueyang Chen & Yang Zhang & Jifeng Yuan, 2025. "Microbial synthesis of branched-chain β,γ-diols from amino acid metabolism," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    6. William M. Shaw & Lucie Studená & Kyler Roy & Piotr Hapeta & Nicholas S. McCarty & Alicia E. Graham & Tom Ellis & Rodrigo Ledesma-Amaro, 2022. "Inducible expression of large gRNA arrays for multiplexed CRISPRai applications," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Bastian Vögeli & Luca Schulz & Shivani Garg & Katia Tarasava & James M. Clomburg & Seung Hwan Lee & Aislinn Gonnot & Elamar Hakim Moully & Blaise R. Kimmel & Loan Tran & Hunter Zeleznik & Steven D. Br, 2022. "Cell-free prototyping enables implementation of optimized reverse β-oxidation pathways in heterotrophic and autotrophic bacteria," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Ulugbek Azimov & Victor Okoro & Hector H. Hernandez, 2021. "Recent Progress and Trends in the Development of Microbial Biofuels from Solid Waste—A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    9. Wang, Kai & Da, Yangyang & Bi, Haoran & Liu, Yanhui & Chen, Biqiang & Wang, Meng & Liu, Zihe & Nielsen, Jens & Tan, Tianwei, 2023. "A one-carbon chemicals conversion strategy to produce precursor of biofuels with Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 208(C), pages 331-340.
    10. Qun Yue & Jie Meng & Yue Qiu & Miaomiao Yin & Liwen Zhang & Weiping Zhou & Zhiqiang An & Zihe Liu & Qipeng Yuan & Wentao Sun & Chun Li & Huimin Zhao & István Molnár & Yuquan Xu & Shuobo Shi, 2023. "A polycistronic system for multiplexed and precalibrated expression of multigene pathways in fungi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Shan Yang & Ruibing Chen & Xuan Cao & Guodong Wang & Yongjin J. Zhou, 2024. "De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Wentao Zheng & Yuxuan Wang & Jie Cui & Guangyao Guo & Yufeng Li & Jin Hou & Qiang Tu & Yulong Yin & A. Francis Stewart & Youming Zhang & Xiaoying Bian & Xue Wang, 2024. "ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    13. Hui Liu & Pei Zhou & Mengya Qi & Liang Guo & Cong Gao & Guipeng Hu & Wei Song & Jing Wu & Xiulai Chen & Jian Chen & Wei Chen & Liming Liu, 2022. "Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Wesley Cardoso Generoso & Alana Helen Santana Alvarenga & Isabelle Taira Simões & Renan Yuji Miyamoto & Ricardo Rodrigues de Melo & Ederson Paulo Xavier Guilherme & Fernanda Mandelli & Clelton Apareci, 2025. "Coordinated conformational changes in P450 decarboxylases enable hydrocarbons production from renewable feedstocks," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Qiang Yan & William T. Cordell & Michael A. Jindra & Dylan K. Courtney & Madeline K. Kuckuk & Xuanqi Chen & Brian F. Pfleger, 2022. "Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Fei Du & Qing Xu & Xin Li & Yiwen Hang & Duoduo Zhang & Feng Zhang & Wang Ma & Xiaoman Sun & He Huang, 2025. "Regulating triacylglycerol cycling for high-efficiency production of polyunsaturated fatty acids and derivatives," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    17. Duck Gyun Kim & Boncheol Gu & Yujin Cha & Jeonghan Ha & Yongjae Lee & Gahyeon Kim & Byung-Kwan Cho & Min-Kyu Oh, 2025. "Engineered CRISPR-Cas9 for Streptomyces sp. genome editing to improve specialized metabolite production," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    18. Charlotte Cautereels & Jolien Smets & Peter Bircham & Dries De Ruysscher & Anna Zimmermann & Peter De Rijk & Jan Steensels & Anton Gorkovskiy & Joleen Masschelein & Kevin J. Verstrepen, 2024. "Combinatorial optimization of gene expression through recombinase-mediated promoter and terminator shuffling in yeast," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Dixit, Yatika & Yadav, Preeti & Sharma, Arun Kumar & Pandey, Poornima & Kuila, Arindam, 2023. "Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Xiaowei Li & Yanyan Wang & Xin Chen & Leon Eisentraut & Chunjun Zhan & Jens Nielsen & Yun Chen, 2025. "Modular deregulation of central carbon metabolism for efficient xylose utilization in Saccharomyces cerevisiae," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.