IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i9p2772-2783.html
   My bibliography  Save this article

Parametric analysis for the installation of solar dish technologies in Mediterranean regions

Author

Listed:
  • Poullikkas, Andreas
  • Kourtis, George
  • Hadjipaschalis, Ioannis

Abstract

In this work a feasibility study is carried out in order to investigate whether the installation of solar dish technologies for power generation in Mediterranean regions is economically feasible. The study takes into account the available solar potential for a typical Mediterranean country, such as Cyprus, as well as all available data concerning the current renewable energy sources policy of the island, including the relevant feed-in tariff of 0.26[euro]/kWh. In order to identify the least cost feasible option for the installation of the solar dish plant a parametric cost-benefit analysis is carried out by varying the solar dish plant capacity, the solar dish plant capital investment and the CO2 emissions trading scheme price. The results indicated that the installation of solar dish plants in Mediterranean regions is economically feasible only in some cases, when a feed-in tariff incentive scheme exists, and that the size and the capital cost of the solar dish power plant are critical parameters affecting the economic viability of the technology.

Suggested Citation

  • Poullikkas, Andreas & Kourtis, George & Hadjipaschalis, Ioannis, 2010. "Parametric analysis for the installation of solar dish technologies in Mediterranean regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2772-2783, December.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2772-2783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00201-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Rui & Li, Ming-Jia & Wang, Wen-Qi & Li, Meng-Jie & Ma, Teng, 2024. "A novel numerical methodology of solar power tower system for dynamic characteristics analysis and performance prediction," Energy, Elsevier, vol. 292(C).
    2. Bianchini, Augusto & Guzzini, Alessandro & Pellegrini, Marco & Saccani, Cesare, 2019. "Performance assessment of a solar parabolic dish for domestic use based on experimental measurements," Renewable Energy, Elsevier, vol. 133(C), pages 382-392.
    3. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    4. Hafez, A.Z. & Soliman, Ahmed & El-Metwally, K.A. & Ismail, I.M., 2017. "Design analysis factors and specifications of solar dish technologies for different systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1019-1036.
    5. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    6. Kousksou, T. & Allouhi, A. & Belattar, M. & Jamil, A. & El Rhafiki, T. & Arid, A. & Zeraouli, Y., 2015. "Renewable energy potential and national policy directions for sustainable development in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 46-57.
    7. Liang, Kai & Zhang, Heng & Chen, Haiping & Gao, Dan & Liu, Yang, 2021. "Design and test of an annular fresnel solar concentrator to obtain a high-concentration solar energy flux," Energy, Elsevier, vol. 214(C).
    8. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    9. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    10. Stefania Guarino & Pietro Catrini & Alessandro Buscemi & Valerio Lo Brano & Antonio Piacentino, 2021. "Assessing the Energy-Saving Potential of a Dish-Stirling Con-Centrator Integrated Into Energy Plants in the Tertiary Sector," Energies, MDPI, vol. 14(4), pages 1-23, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2772-2783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.