IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v92y2016icp415-427.html
   My bibliography  Save this article

Lift-and-project MVEE based convex hull for robust SCED with wind power integration using historical data-driven modeling approach

Author

Listed:
  • Ding, Tao
  • Lv, Jiajun
  • Bo, Rui
  • Bie, Zhaohong
  • Li, Fangxing

Abstract

This paper presents an adjustable robust security constrained economic dispatch (SCED) model with wind power uncertainties. First, the scenario based adjustable robust SCED model is presented. It considers multiple scenarios from historical data as well as the spatial correlation among wind farms. Then, the proposed SCED model becomes an optimization problem with a large amount of constraints which is skillfully solved using a lift-and-project minimum volume enclosing ellipsoid (MVEE) based convex hull. Furthermore, the proposed model is transformed into a second order cone programming (SOCP) model by the use of participation factors to generate adjustable generation outputs and thus guarantee the energy balance. In order to further reduce the computational complexity, the inactive constraints reduction strategy is proposed to quickly eliminate inactive SOC security constraints before solving the model. Numerical results of IEEE 14-bus and 118-bus test systems as well as the practical Polish power systems with several wind farms show that the proposed model can achieve better economies. Moreover, more than 82% of security constraints are identified as inactive in various cases of the simulation, and the proposed inactive constraints reduction strategy is promising for improving the computational performance.

Suggested Citation

  • Ding, Tao & Lv, Jiajun & Bo, Rui & Bie, Zhaohong & Li, Fangxing, 2016. "Lift-and-project MVEE based convex hull for robust SCED with wind power integration using historical data-driven modeling approach," Renewable Energy, Elsevier, vol. 92(C), pages 415-427.
  • Handle: RePEc:eee:renene:v:92:y:2016:i:c:p:415-427
    DOI: 10.1016/j.renene.2016.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Ding & Qinglai Guo & Rui Bo & Hongbin Sun & Boming Zhang, 2014. "A Static Voltage Security Region for Centralized Wind Power Integration—Part I: Concept and Method," Energies, MDPI, vol. 7(1), pages 1-24, January.
    2. Tao Ding & Qinglai Guo & Rui Bo & Hongbin Sun & Boming Zhang & Tian-en Huang, 2014. "A Static Voltage Security Region for Centralized Wind Power Integration—Part II: Applications," Energies, MDPI, vol. 7(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xinran & Ding, Tao & Zhang, Xiaosheng & Huang, Yuhan & Li, Li & Zhang, Qinglei & Li, Fangxing, 2023. "A robust reliability evaluation model with sequential acceleration method for power systems considering renewable energy temporal-spatial correlation," Applied Energy, Elsevier, vol. 340(C).
    2. Ji, Ling & Zhang, Bei-Bei & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao, 2018. "GHG-mitigation oriented and coal-consumption constrained inexact robust model for regional energy structure adjustment – A case study for Jiangsu Province, China," Renewable Energy, Elsevier, vol. 123(C), pages 549-562.
    3. Zhang, Yachao & Liu, Yan & Shu, Shengwen & Zheng, Feng & Huang, Zhanghao, 2021. "A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources," Energy, Elsevier, vol. 216(C).
    4. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    5. Zhou, Bo & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2019. "Data-adaptive robust unit commitment in the hybrid AC/DC power system," Applied Energy, Elsevier, vol. 254(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Wu & Lin Guan & Feng Li & Qi Zhao & Yingjun Zhuo & Peng Chen & Yaotang Lv, 2018. "Optimal Dynamic Reactive Power Reserve for Wind Farms Addressing Short-Term Voltage Issues Caused by Wind Turbines Tripping," Energies, MDPI, vol. 11(7), pages 1-15, July.
    2. Tao Ding & Qinglai Guo & Rui Bo & Hongbin Sun & Boming Zhang & Tian-en Huang, 2014. "A Static Voltage Security Region for Centralized Wind Power Integration—Part II: Applications," Energies, MDPI, vol. 7(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:92:y:2016:i:c:p:415-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.