IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp133-155.html
   My bibliography  Save this article

Structural design of spars for 100-m biplane wind turbine blades

Author

Listed:
  • Roth-Johnson, Perry
  • Wirz, Richard E.
  • Lin, Edward

Abstract

Large wind turbine blades are being developed at lengths of 75–100 m, in order to improve energy capture and reduce the cost of wind energy. Bending loads in the inboard region of the blade make large blade development challenging. The “biplane blade” design was proposed to use a biplane inboard region to improve the design of the inboard region and improve overall performance of large blades. This paper focuses on the design of the internal “biplane spar” structure for 100-m biplane blades. Several spars were designed to approximate the Sandia SNL100-00 blade (“monoplane spar”) and the biplane blade (“biplane spar”). Analytical and computational models are developed to analyze these spars. The analytical model used the method of minimum total potential energy; the computational model used beam finite elements with cross-sectional analysis. Simple load cases were applied to each spar and their deflections, bending moments, axial forces, and stresses were compared. Similar performance trends are identified with both the analytical and computational models. An approximate buckling analysis shows that compressive loads in the inboard biplane region do not exceed buckling loads. A parametric analysis shows biplane spar configurations have 25–35% smaller tip deflections and 75% smaller maximum root bending moments than monoplane spars of the same length and mass per unit span. Root bending moments in the biplane spar are largely relieved by axial forces in the biplane region, which are not significant in the monoplane spar. The benefits for the inboard region could lead to weight reductions in wind turbine blades. Innovations that create lighter blades can make large blades a reality, suggesting that the biplane blade may be an attractive design for large (100-m) blades.

Suggested Citation

  • Roth-Johnson, Perry & Wirz, Richard E. & Lin, Edward, 2014. "Structural design of spars for 100-m biplane wind turbine blades," Renewable Energy, Elsevier, vol. 71(C), pages 133-155.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:133-155
    DOI: 10.1016/j.renene.2014.05.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400281X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shah, Owaisur Rahman & Tarfaoui, Mostapha, 2016. "The identification of structurally sensitive zones subject to failure in a wind turbine blade using nodal displacement based finite element sub-modeling," Renewable Energy, Elsevier, vol. 87(P1), pages 168-181.
    2. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    3. Chiu, Phillip K. & Roth-Johnson, Perry & Wirz, Richard E., 2020. "Optimal structural design of biplane wind turbine blades," Renewable Energy, Elsevier, vol. 147(P1), pages 2440-2452.
    4. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:133-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.