IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i5p1645-1651.html
   My bibliography  Save this article

Comparative study of internal storage and external storage absorption cooling systems

Author

Listed:
  • Soutullo, S.
  • San Juan, C.
  • Heras, M.R.

Abstract

This work presents a comparative study of the performance of absorption cooling systems with internal storage and with external storage. A full dynamic simulation model including the solar collector field, the absorption heat pump system and the building loads has been performed. The first system is composed by four heat pumps that store energy in the form of crystallized salts so that no external storage capacity is required. The second one is a conventional system composed of one liquid absorption pump and external storage in a water tank. Many batteries of simulations have been done to evaluate the performance of these cooling machines when varying solar field surface, solar collector’s efficiency curve and the storage capacity of the systems. Two different indices have been calculated to analyze the response of both systems: Solar Fraction and Primary Energy Ratio. The comparison between both absorption chillers indicates that in order to reach similar values of storage energy, conventional system has a greater room requirement than four units with internal storage working in parallel, requiring an external water tank of at least 15 m3.

Suggested Citation

  • Soutullo, S. & San Juan, C. & Heras, M.R., 2011. "Comparative study of internal storage and external storage absorption cooling systems," Renewable Energy, Elsevier, vol. 36(5), pages 1645-1651.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1645-1651
    DOI: 10.1016/j.renene.2010.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María-José Suárez López & Jesús-Ignacio Prieto & Eduardo Blanco & David García, 2020. "Tests of an Absorption Cooling Machine at the Gijón Solar Cooling Laboratory," Energies, MDPI, vol. 13(15), pages 1-13, August.
    2. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    3. Yu, N. & Wang, R.Z. & Lu, Z.S. & Wang, L.W. & Ishugah, T.F., 2014. "Evaluation of a three-phase sorption cycle for thermal energy storage," Energy, Elsevier, vol. 67(C), pages 468-478.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1645-1651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.