IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i13p2157-2162.html
   My bibliography  Save this article

Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria

Author

Listed:
  • Tsangrassoulis, Aris
  • Bourdakis, Vassilis

Abstract

Designers are often facing prescribed requirements concerning daylight in atria. For the accurate prediction of the illuminances the designers should employ either computer simulations or apply empirical equations. This study compares results obtained by a practical design procedure and simulated results using Radiance and Lightscape 3.2.

Suggested Citation

  • Tsangrassoulis, Aris & Bourdakis, Vassilis, 2003. "Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria," Renewable Energy, Elsevier, vol. 28(13), pages 2157-2162.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:13:p:2157-2162
    DOI: 10.1016/S0960-1481(03)00078-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103000788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(03)00078-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acosta, Ignacio & Navarro, Jaime & Sendra, Juan José, 2014. "Lighting design in courtyards: Predictive method of daylight factors under overcast sky conditions," Renewable Energy, Elsevier, vol. 71(C), pages 243-254.
    2. Acosta, Ignacio & Varela, Carmen & Molina, Juan Francisco & Navarro, Jaime & Sendra, Juan José, 2018. "Energy efficiency and lighting design in courtyards and atriums: A predictive method for daylight factors," Applied Energy, Elsevier, vol. 211(C), pages 1216-1228.
    3. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    4. Sun, Yanyi & Wu, Yupeng & Wilson, Robin, 2018. "A review of thermal and optical characterisation of complex window systems and their building performance prediction," Applied Energy, Elsevier, vol. 222(C), pages 729-747.
    5. Yeo Beom Yoon & Woo Ram Jeong & Kwang Ho Lee, 2014. "Window Material Daylighting Performance Assessment Algorithm: Comparing Radiosity and Split-Flux Methods," Energies, MDPI, vol. 7(4), pages 1-15, April.
    6. Yeo Beom Yoon & Rashmi Manandhar & Kwang Ho Lee, 2014. "Comparative Study of Two Daylighting Analysis Methods with Regard to Window Orientation and Interior Wall Reflectance," Energies, MDPI, vol. 7(9), pages 1-22, September.
    7. Bustamante, Waldo & Uribe, Daniel & Vera, Sergio & Molina, Germán, 2017. "An integrated thermal and lighting simulation tool to support the design process of complex fenestration systems for office buildings," Applied Energy, Elsevier, vol. 198(C), pages 36-48.
    8. Freewan, Ahmed A. & Shao, Li & Riffat, Saffa, 2009. "Interactions between louvers and ceiling geometry for maximum daylighting performance," Renewable Energy, Elsevier, vol. 34(1), pages 223-232.

    More about this item

    Keywords

    Daylight; Algorithms; Atria;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:13:p:2157-2162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.