IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148125000047.html
   My bibliography  Save this article

Low-carbon advancement through cleaner production: A machine learning approach for enhanced hydrogen storage predictions in coal seams

Author

Listed:
  • Wang, Yongjun
  • Vo Thanh, Hung
  • Zhang, Hemeng
  • Rahimi, Mohammad
  • Dai, Zhenxue
  • Abualigah, Laith

Abstract

Hydrogen is recognized as a crucial participant in the ever-changing field of global energy sustainability due to its exceptional energy density and environmentally friendly combustion. This study aimed to improve the prediction of hydrogen adsorption in coal using advanced machine learning (ML) approaches. The focus of this research is on the General Regression Neural Network (GRNN) and XGBoost, commonly used ML tools, highlighting the improvements made to these methods to overcome problems unsolved by traditional approaches. The GRNN, known for its outstanding proficiency during the training phase, demonstrated strong predictive ability with an R2 score of 0.971 and low error margins in the testing phase, as evidenced by RMSE and MAE values of 0.004 and 0.001, respectively. Remarkably, the GRNN achieved unmatched prediction accuracy with an R2 of 0.999 during the test phase. Similarly, the XGBoost technique showed its ability to reduce errors, achieving RMSE and MAE values of 0.151 and 0.073, respectively. These results underscore the reliability of GRNN and XGBoost as tools for measuring hydrogen storage capabilities in coal beds. The study demonstrates the GRNN model's accuracy in representing the complexities of hydrogen uptake in coal, emphasizing the feasibility of ML models in improving hydrogen storage methods. This research contributes significantly to sustainable energy applications, showing how machine learning techniques can support sustainable energy strategy.

Suggested Citation

  • Wang, Yongjun & Vo Thanh, Hung & Zhang, Hemeng & Rahimi, Mohammad & Dai, Zhenxue & Abualigah, Laith, 2025. "Low-carbon advancement through cleaner production: A machine learning approach for enhanced hydrogen storage predictions in coal seams," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000047
    DOI: 10.1016/j.renene.2025.122342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125000047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vo Thanh, Hung & Sheini Dashtgoli, Danial & Zhang, Hemeng & Min, Baehyun, 2023. "Machine-learning-based prediction of oil recovery factor for experimental CO2-Foam chemical EOR: Implications for carbon utilization projects," Energy, Elsevier, vol. 278(PA).
    2. Fei Gao & Peng Wang & Dapeng Wang & Yulong Yang & Xun Zhang & Gang Bai, 2023. "Model for Predicting CO 2 Adsorption in Coal Left in Goaf Based on Backpropagation Neural Network," Energies, MDPI, vol. 16(9), pages 1-16, April.
    3. Liu, Ang & Liu, Shimin, 2023. "Hydrogen sorption and diffusion in coals: Implications for hydrogen geo-storage," Applied Energy, Elsevier, vol. 334(C).
    4. Hui, Gang & Chen, Zhangxin & Wang, Youjing & Zhang, Dongmei & Gu, Fei, 2023. "An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity," Energy, Elsevier, vol. 266(C).
    5. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.
    6. Vo Thanh, Hung & Yasin, Qamar & Al-Mudhafar, Watheq J. & Lee, Kang-Kun, 2022. "Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers," Applied Energy, Elsevier, vol. 314(C).
    7. Majidi Nezhad, M. & Heydari, A. & Pirshayan, E. & Groppi, D. & Astiaso Garcia, D., 2021. "A novel forecasting model for wind speed assessment using sentinel family satellites images and machine learning method," Renewable Energy, Elsevier, vol. 179(C), pages 2198-2211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nassabeh, Mehdi & You, Zhenjiang & Keshavarz, Alireza & Iglauer, Stefan, 2024. "Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection," Energy, Elsevier, vol. 305(C).
    2. Yi, Jun & Qi, ZhongLi & Li, XiangChengZhen & Liu, Hong & Zhou, Wei, 2024. "Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China," Applied Energy, Elsevier, vol. 357(C).
    3. Ming Yue & Quanqi Dai & Haiying Liao & Yunfeng Liu & Lin Fan & Tianru Song, 2024. "Prediction of ORF for Optimized CO 2 Flooding in Fractured Tight Oil Reservoirs via Machine Learning," Energies, MDPI, vol. 17(6), pages 1-20, March.
    4. Yuxuan Yang & Zhigang Wen & Weichao Tian & Yunpeng Fan & Heting Gao, 2024. "A New Model for Predicting Permeability of Chang 7 Tight Sandstone Based on Fractal Characteristics from High-Pressure Mercury Injection," Energies, MDPI, vol. 17(4), pages 1-16, February.
    5. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    6. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    7. Liu, Jianqiao & Liu, Jia & Zhu, Yiheng & Sun, Wenyue & Zhang, Daowei & Pan, Huanquan, 2025. "Multi-objective optimization for efficient CO2 storage under pressure buildup constraint in saline aquifer," Applied Energy, Elsevier, vol. 382(C).
    8. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    9. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    10. Ming Meng & Chenge Song, 2020. "Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    11. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    12. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    13. Alipour, Mohammadali & Aghaei, Jamshid & Norouzi, Mohammadali & Niknam, Taher & Hashemi, Sattar & Lehtonen, Matti, 2020. "A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration," Energy, Elsevier, vol. 205(C).
    14. Wensong Huang & Ping Wang & Gang Hui & Xiangwen Kong & Yuepeng Jia & Lei Huang & Yufei Bai & Zhiyang Pi & Ye Li & Fuyu Yao & Penghu Bao & Yujie Zhang, 2024. "Unconventional Fracture Networks Simulation and Shale Gas Production Prediction by Integration of Petrophysics, Geomechanics and Fracture Characterization," Energies, MDPI, vol. 17(20), pages 1-16, October.
    15. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    16. Zou, Xiaojing & He, Changyu & Guan, Wei & Zhou, Yan & Zhao, Hongyang & Cai, Mingyu, 2023. "Reservoir tortuosity prediction: Coupling stochastic generation of porous media and machine learning," Energy, Elsevier, vol. 285(C).
    17. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
    18. Nafees Ali & Xiaodong Fu & Umar Ashraf & Jian Chen & Hung Vo Thanh & Aqsa Anees & Muhammad Shahid Riaz & Misbah Fida & Muhammad Afaq Hussain & Sadam Hussain & Wakeel Hussain & Awais Ahmed, 2022. "Remote Sensing for Surface Coal Mining and Reclamation Monitoring in the Central Salt Range, Punjab, Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    19. Leidy Gutiérrez & Julian Patiño & Eduardo Duque-Grisales, 2021. "A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction," Energies, MDPI, vol. 14(15), pages 1-16, July.
    20. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148125000047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.