A combined immobilization system for high-solids cellulosic ethanol production by simultaneous saccharification and fermentation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.122304
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Poolakkalody, Najya Jabeen & Ramesh, Kaviraj & Palliprath, Suchithra & Nittoor, Shima Namath & Santiago, Rogelio & Kabekkodu, Shama Prasada & Manisseri, Chithra, 2023. "Understanding triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield," Renewable Energy, Elsevier, vol. 209(C), pages 420-430.
- Zhu, Xing & Tian, Yi & He, Bin, 2023. "Modification of cellulase with smart-green polymers to promote low-cost and cleaner production of cellulosic ethanol," Renewable Energy, Elsevier, vol. 205(C), pages 525-533.
- Du, Jiliang & Chen, Le & Li, Jianan & Zuo, Ranan & Yang, Xiushan & Chen, Hongzhang & Zhuang, Xinshu & Tian, Shen, 2018. "High-solids ethanol fermentation with single-stage methane anaerobic digestion for maximizing bioenergy conversion from a C4 grass (Pennisetum purpereum)," Applied Energy, Elsevier, vol. 215(C), pages 437-443.
- Yulin, Xiang & Zhang, Yongbo & Wu, Jingqi & Zhu, Jing & Cao, Baowei & Xiong, Chunyan, 2024. "Immobilization of laccase and glucosidase on TiO2/CdS nanoparticles for enhanced H2 production from Spartina alterniflora Loisel," Renewable Energy, Elsevier, vol. 235(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Kyriakou, Maria & Chatziiona, Vasiliki K. & Costa, Costas N. & Kallis, Michalis & Koutsokeras, Loukas & Constantinides, Georgios & Koutinas, Michalis, 2019. "Biowaste-based biochar: A new strategy for fermentative bioethanol overproduction via whole-cell immobilization," Applied Energy, Elsevier, vol. 242(C), pages 480-491.
More about this item
Keywords
Immobilization; Steam-exploded corn stover; Lignin degradation; Cell surface display; Simultaneous saccharification and fermentation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023723. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.